Advertisement

Surface Modification of Aluminum Alloys by Two-Stage Passivation in Solutions of Vinyltrimethoxysilane and Organic Inhibitors

  • A. M. Semiletov
  • Yu. I. KuznetsovEmail author
  • A. A. Chirkunov
CORROSION INHIBITORS
  • 1 Downloads

Abstract

The protective ability of films formed on Al alloys from solutions of vinyltrimethoxysilane and organic corrosion inhibitors, such as sodium salts of oleyl sarcosine and dioctyl phosphate, has been evaluated by electrochemical and corrosion methods. It is shown that layer-by-layer treatment significantly increases the efficiency of passivation not only with individual components, but also with mixtures thereof. The protective ability of the resulting coatings has been evaluated by the express method (droplet test method) and tests in a humid atmosphere and salt spray chamber. The thicknesses of the obtained CI layers on the surface of Al alloy D16 has been estimated using the ellipsometric method.

Keywords:

corrosion aluminum and its alloys corrosion inhibitors trialkoxysilanes 

Notes

ACKNOWLDGEMENTS

Dr. N.P. Andreeva is gratefully acknowledged for valuable discussion during ellipsometric measurements and calculations of the thickness of adsorbed layers.

FUNDING

This work was supported by the Russian Foundation for Basic Research, grant no. 16-03-00199 “Modification of Al, Mg, and their Alloys by Nanolayers of Organic Corrosion Inhibitors.”

REFERENCES

  1. 1.
    Kuznetsov, Yu.I., Organic Inhibitors of Corrosion of Metals, New York: Plenum Press, 1996.CrossRefGoogle Scholar
  2. 2.
    Kuznetsov, Yu.I., Int. J. Corros. Scale Inhib., 2015, vol. 4, no. 4, pp. 284–310.CrossRefGoogle Scholar
  3. 3.
    Kuznetsov, Yu.I., Int. J. Corros. Scale Inhib., 2016, vol. 5, no. 4, pp. 282–318.CrossRefGoogle Scholar
  4. 4.
    Rammelt, U., Kohler, S., and Reinhard, G., Electrochim. Acta, 2008, vol. 53, pp. 6968–6972.CrossRefGoogle Scholar
  5. 5.
    Lebrini, M., Fontaine, G., Gengembre, L., et al., Corros. Sci., 2009, vol. 51, pp. 1201–1206.CrossRefGoogle Scholar
  6. 6.
    Khiati, Z., Othman, A.A., Sanchez-Moreno, M., et al., Corros. Sci., 2011, vol. 53, pp. 3092–3099.CrossRefGoogle Scholar
  7. 7.
    Milic, S.M. and Antonijevic, M.M., Corros. Sci., 2009, vol. 51, pp. 28–34.CrossRefGoogle Scholar
  8. 8.
    Varvara, S., Muresan, L.M., Rahmouni, K., and Takenouti, H., Corros. Sci., 2008, vol. 50, pp. 2596–2604.CrossRefGoogle Scholar
  9. 9.
    Trabanelli, G., Frignani, A., Monticelli, C., and Zucchi, F., Int. J. Corros. Scale Inhib., 2015, vol. 4, no. 1, pp. 96–107.CrossRefGoogle Scholar
  10. 10.
    Kuznetsov, Yu.I., Andreeva, N.P., and Kazanskaya, G.Yu., Prot. Met., 2000, vol. 36, no. 4, pp. 351–356.CrossRefGoogle Scholar
  11. 11.
    Oleinik, S.V., Kuzenkov, Yu.A., Andreeva, N.P., and Kuznetsov, Yu.I., Korroz.: Mater., Zashch., 2008, no. 3, pp. 29–34.Google Scholar
  12. 12.
    Chirkunov, A.A., Semiletov, A.M., Kuznetsov, Yu.I., and Andreeva, N.P., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 7, pp. 1154–1159.CrossRefGoogle Scholar
  13. 13.
    Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., et al., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 6, pp. 655–662.CrossRefGoogle Scholar
  14. 14.
    Frignani, F., Zucci, F., Trabanelli, G., and Grassi, V., Corros. Sci., 2006, vol. 48, no. 8, pp. 2258–2273.CrossRefGoogle Scholar
  15. 15.
    Beccaria, A.M. and Chiaruttini, L., Corros. Sci., 1999, vol. 41, no. 5, pp. 885–899.CrossRefGoogle Scholar
  16. 16.
    Agafonkin, A.V., Kuznetsov, Yu.I., and Andreeva, N.P., Korroz.: Mater., Zashch., 2010, no. 8, pp. 24–30.Google Scholar
  17. 17.
    Boisier, G., Portail, N., and Pebere, N., Electrochim. Acta, 2010, vol. 55, no. 21, pp. 6182–6189.CrossRefGoogle Scholar
  18. 18.
    Lamaka, S.V., Zheludkevich, M.L., Yasakau, K.A., et al., Electrochim. Acta, 2007, vol. 52, no. 25, pp. 7231–7247.CrossRefGoogle Scholar
  19. 19.
    Balbo, A., Frignani, A., Grassi, V., and Zucchi, F., Corros. Sci., 2013, vol. 73, pp. 80–88.CrossRefGoogle Scholar
  20. 20.
    Wang, Q., Zhang, B., Qu, M., et al., Appl. Surf. Sci., 2008, vol. 254, pp. 2009–2012.CrossRefGoogle Scholar
  21. 21.
    Zimina, Yu.M., Kuzenkov, Yu.A., and Oleinik, S.V., Korroz.: Mater., Zashch., 2010, no. 7, pp. 44–48.Google Scholar
  22. 22.
    Oleinik, S.V., Rudnev, V.C., Kuzenkov, Yu.A., et al., Korroz.: Mater., Zashch., 2012, no. 11, pp. 36–41.Google Scholar
  23. 23.
    Semiletov, A.M., Kuznetsov, Yu.I., and Chirkunov, A.A., Korroz.: Mater., Zashch., 2016, no. 6, pp. 29–36.Google Scholar
  24. 24.
    Semiletov, A.M., Kuznetsov, Yu.I., and Chirkunov, A.A., Korroz.: Mater., Zashch., 2017, no. 10, pp. 16–22.Google Scholar
  25. 25.
    McCrackin, F.L., NBS Technical Note 479, Washington, DC: U.S. Government Printing Office, 1969.Google Scholar
  26. 26.
    Kuznetsov, Yu.I., Chirkunov, A.A., and Filippov, A.A., Russ. J. Electrochem., 2013, vol. 49, no. 12, pp. 1107–1115.CrossRefGoogle Scholar
  27. 27.
    Kuznetsov, Yu.I., Agafonkina, M.O., Andreeva, N.P., and Kazansky, L.P., Corros. Sci., 2015, vol. 100, pp. 535–543.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. M. Semiletov
    • 1
  • Yu. I. Kuznetsov
    • 1
    Email author
  • A. A. Chirkunov
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations