Advertisement

The Effect of Organosilanes on Protective Properties of Polymer Coatings for Underground Pipelines. Inhibition of Cathodic Peeling-off of Polymer Coatings from Metal

  • M. A. PetruninEmail author
  • L. B. Maksaeva
  • A. A. Rybkin
  • N. A. Gladkikh
  • T. A. Yurasova
  • M. A. Maleeva
  • A. I. Marshakov
PROTECTIVE COATINGS
  • 4 Downloads

Abstract

Protective properties of polymer coatings are mainly determined by their adhesion properties. Organosilanes represent the most commonly applied adhesion promoters; they are also capable of decelerating corrosion processes. In this study, the possibility of applying organosilanes in the function of inhibitors of cathodic peeling-off of polymer coatings has been investigated. It has been established that the introduction of vinyl silane to the coating results in the inhibition of cathodic peeling-off due to higher compatibility of vinyl with the components of the bitumen-polymer coating.

Keywords

: cathodic peeling-off pipe steel polymer coatings organosilanes 

Notes

FUNDING

This study was performed with a financial support of the Russian Foundation for Basic Research (project no. 17-03-00232).

REFERENCES

  1. 1.
    Strizhevskii, I.V., Belogolovskii, A.D., Dmitriev, V.I., Petrov, N.A., Filinovskii, V.Yu., and Freiman, L.I., Spravochnik. Zashchita podzemnykh metallicheskikh sooruzhenii ot korrozii (Handbook. Protection of Underground Metal Constructions Against Corrosion), Moscow: Stroiizdat, 1990.Google Scholar
  2. 2.
    Avdeev, Yu.P., Karpov, V.A., Maksaeva, L.B., and Petrunin, M.A., Int. J. Corros. Scale Inhib., 2014, vol. 3, no. 3, pp. 198–203.CrossRefGoogle Scholar
  3. 3.
    Strizhevskii, I.V., Podzemnaya korroziya i metody zashchity (Underground Corrosion and Methods for Protecting), Moscow: Metallurgiya, 1988.Google Scholar
  4. 4.
    Shapoval, G.S. and Bagrij, V.A., Proc. 10th. Int. Congress on Metallic Corrosion, Madras, 1987, vol. 7, pp. 1107–1112.Google Scholar
  5. 5.
    Watts, J.F., J. Adhes., 1989, vol. 31, pp. 73–81.CrossRefGoogle Scholar
  6. 6.
    Evans, U.R., J. Electrochem. Soc., 1929, vol. 55, p. 243.Google Scholar
  7. 7.
    Touhsaent, R.E. and Leidheiser, H., Corros. Sci., 1972, vol. 28, p. 435.CrossRefGoogle Scholar
  8. 8.
    Watts, J.F. and Wolstenholms, J., An Introduction to Surface Analysis by XPS and AES, Chichester: Wiley, 2003.CrossRefGoogle Scholar
  9. 9.
    Holub, J., Wong, T., and Marissa, T., Proc. Corrosion 2007, Nashville, TN, March 11–15, 2007, p. 07022.Google Scholar
  10. 10.
    BS 3900-F10:1985: Determination of Resistance to Cathodic Disbonding of Coatings for Use in Marine Environments, London, 2008.Google Scholar
  11. 11.
    ASTM G8-96 (2010): Standard Test Methods for Cathodic Disbonding of Pipeline Coatings, West Conshohocken, PA: ASTM Int., 2010.Google Scholar
  12. 12.
    ASTM G42-90: Standard Test Method for Cathodic Disbonding of Pipeline Coatings Subjected to Elevated Temperatures, West Conshohocken, PA: ASTM Int., 2011.Google Scholar
  13. 13.
    ASTM G89-85: Methods for Cathodic Disbonding of Pipeline Coatings Subjected to Cyclic Temperatures, West Conshohocken, PA: ASTM Int.Google Scholar
  14. 14.
    ASTM D6190-97: Standard Test Method for Cathodic Disbonding of Pipeline Coatings by Laboratory Simulation of Soil Burial, West Conshohocken, PA: ASTM Int., 1997.Google Scholar
  15. 15.
    Rozenfel'd, I.L. and Rubinshtein, F.I., Antikorrozionnye gruntovki i ingibirovannye lakokrasochnye pokrytiya (Anticorrosion Primers and Inhibited Lacquer Coatings), Moscow: Khimiya, 1980.Google Scholar
  16. 16.
    Mikhailov, A.A., Panchenko, Yu.M., and Kuznetsov, Yu.I., Atmosfernaya korroziya i zashchita metallov (Atmospheric Corrosion and Protection of Metals), Tambov: Izd. Pershina, 2016.Google Scholar
  17. 17.
    Pluddemann, E.P., Silane Coupling Agents, New York: Plenum Press, 1982.CrossRefGoogle Scholar
  18. 18.
    Petrunin, M.A., Nazarov, N.A., Zaitsev, R.M., and Mikhailovskii, Yu.M., Zashch. Met., 1990, vol. 26, no. 5, pp. 759–765.Google Scholar
  19. 19.
    Maleeva, M.A., Ignatenko, V.E., Shapagin, A.V., Sherbina, A.A., Maksaeva, L.B., Marshakov, A.I., and Petrunin, M.A., Int. J. Corros. Scale Inhib., 2015, vol. 4, no. 3, pp. 226–234.CrossRefGoogle Scholar
  20. 20.
    Petrunin, M.A., Nazarov, A.P., and Mikhailovskii, Yu.N., Zashch. Met., 1990, vol. 26, no. 6, pp. 970–976.Google Scholar
  21. 21.
    TU (Technical Specifications) no. 5774-015-32989231-2013: Thermo-Resistant Roll Reinforced Mastic Material “Dekom-RAM”, Moscow, 2013.Google Scholar
  22. 22.
    GOST (State Standard) no. R 51164-98: Steel Pipe Mains. General Requirements for Corrosion Protection, Moscow: Izd. Standartov, 1998.Google Scholar
  23. 23.
    TU (Technical Specifications) no. 2313-011-32989231-2013: Thermo-Resistant Bitumen-Polymer Primer “DEKOM‑GAZ”, Moscow, 2013.Google Scholar
  24. 24.
    TU (Technical Specifications) no. 2245-014-32989231-2013: Thermo-Resistant Radiation-Modified Mastic Band “DEKOM-KOR”, Moscow, 2013.Google Scholar
  25. 25.
    GOST (State Standard) no. 804-93: Primary Magnesium Ingots. Specifications, Moscow: Izd. Standartov, 2004.Google Scholar
  26. 26.
    Marshakov, A.I., Vo, T., Ignatenko, V.E., and Muradov, A.V., Int. J. Corros. Scale Inhib., 2017, vol. 6, no. 2, pp. 151–161.Google Scholar
  27. 27.
    Pohl, E.R., Osterholtz, F.D., Ishida, H., and Kumar, G., Molecular Characterization of Composite Interfaces, New York: Plenum Press, 1985.Google Scholar
  28. 28.
    Arslanov, V.V. and Funke, V., Zashch. Met., 1989, vol. 25, pp. 427–432.Google Scholar
  29. 29.
    El-Awadv, A.A., Abd-El-Nabey, B.A., and Aziz, S.G., J. Electrochem. Soc., 1992, vol. 139, pp. 2149–2154.CrossRefGoogle Scholar
  30. 30.
    Kotenev, V.A., Petrunin, M.A., Maksaeva, L.B., Sokolova, N.P., Gorbunov, A.M., Kablov, E.N., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 5, pp. 597–604.CrossRefGoogle Scholar
  31. 31.
    Franquet, A., Terryn, H., and Veecken, J., Thin Solid Films, 2003, p. 441, nos. 1–2, p. 76.CrossRefGoogle Scholar
  32. 32.
    Alkan, M., et al., Microporous Mesoporous Mater., 2005, vol. 84, pp. 75–83.CrossRefGoogle Scholar
  33. 33.
    Ouyang, Y., Liu, Y., Zhu, R., Ge, U., Xu, T., Luo, Z., and Liang, Z., Miner. Eng., 2015, vol. 72, pp. 57–64.CrossRefGoogle Scholar
  34. 34.
    Wen, K., Maoz, R., Cohen, H., Sagiv, J., Gibaud, A., Desert, A., and Ocko, B.M., ACS Nano, 2008, vol. 2, no. 3, pp. 579–599.CrossRefGoogle Scholar
  35. 35.
    Ishida, H. and Koenig, L., J.Polym. Sci., Ser. A: Chem., Phys., 1980, vol. 184, pp. 1931–1934.Google Scholar
  36. 36.
    Sabah, E. and Cfelik, M.S., J. Colloid Interface Sci., 2002, vol. 251, pp. 33–38.CrossRefGoogle Scholar
  37. 37.
    Chaneac, C., Tronc, E., and Jolivet, J.P., J. Mater. Chem., 1996, no. 6, p. 1905.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. A. Petrunin
    • 1
    Email author
  • L. B. Maksaeva
    • 1
  • A. A. Rybkin
    • 1
  • N. A. Gladkikh
    • 1
  • T. A. Yurasova
    • 1
  • M. A. Maleeva
    • 1
  • A. I. Marshakov
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations