Advertisement

Stability of Steel X03Cr23Ni6Mo4Cu3NbN (after ESR) Against the Impact of Products of the Atmospheric Pressure Surface Discharge Plasma

  • A. V. LazukinEmail author
  • S. A. Krivov
  • D. A. Shurygin
  • I. V. Selivonin
  • A. M. Nikitin
  • E. M. Simich–Lafitskaya
  • A. S. Gudenko
  • A. A. Korneev
  • I. A. Moralev
GENERAL ISSUES OF CORROSION
  • 3 Downloads

Abstract

Under the effect of the surface discharge in air at atmospheric pressure, the edge of the electrode exposed in the plasma undergoes significant changes (oxidation, erosion, local melting, redeposition of oxides from the gas phase, etc.). The degradation of the working electrode, in the cases, e.g., aluminum or copper electrodes, can cause a continuous change in the electrical characteristics of the device, the executive part of which is the surface discharge system. This work presents the results of an experimental study of the effect of surface discharge plasma products excited by a sinusoidal voltage of 20 and 110 kHz in ambient air on steel X03Cr23Ni6Mo4Cu3NbN (after ESR) acting as an exposed electrode. It is shown that, despite the occurrence of microdamages on the surface of the sample and the formation of local oxide layers, the discharge energy during 4 h of exposure to the plasma products remains unchanged.

Keywords:

surface barrier discharge corrosion-resistant steel oxidation surface structure discharge energy volt-coulomb characteristic 

Notes

FUNDING

This study was supported by grant 18-76-10019 from the Russian Science Foundation.

REFERENCES

  1. 1.
    Lazukin, A.V., Selivonin, I.V., Moralev, I.A., and Krivov, S.A., J. Phys.: Conf. Ser., 2017, vol. 927, p. 012028.Google Scholar
  2. 2.
    Selivonin, I.V., Lazukin, A.V., Moralev, I.A., and Krivov, S.A., Plasma Sources Sci. Technol., 2018, vol. 27, p. 085003.CrossRefGoogle Scholar
  3. 3.
    Gibalov, V. and Pietsch, G., Plasma Sources Sci. Technol., 2012, vol. 21, p. 024010.CrossRefGoogle Scholar
  4. 4.
    Sakiyama, Y. and Graves, D.B., Plasma Sources Sci. Technol., 2013, vol. 22, p. 012003.CrossRefGoogle Scholar
  5. 5.
    Sakiyama, Y., Graves, D.B., Chang, H., Shimizu, T., and Morfill, G., J. Phys. D: Appl. Phys., 2012, vol. 45, p. 425201.CrossRefGoogle Scholar
  6. 6.
    Moreau, E., J. Phys. D: Appl. Phys., 2007, vol. 40, pp. 605–636.CrossRefGoogle Scholar
  7. 7.
    Pescini, E., De Giorgi, M.G., Francioso, L., Taurino, A., and Lavoie, P., Proc. 54th AIAA Aerospace Sciences Meeting, San Diego, CA, 2016, p. 0196.Google Scholar
  8. 8.
    Zubchenko, A.S., Sharyi, N.V., and Rabinovich, V.P., Vopr. At. Nauki Tekh., Ser.: Obespechenie Bezop. AES, 2014, no. 34, pp. 42–52.Google Scholar
  9. 9.
    Levkov, L.Ya., Dub, V.S., and Shurygin, D.A., Proc. Liquid Metal Processing and Casting Conference (LMPC), Philadelphia, PA, 2017, pp. 129–135.Google Scholar
  10. 10.
    Paar, A., Schneider, R., Zeller, P., Reiter, G., Paul, S., Siller, I., and Wurzinger, P., Proc. Int. Symposium on Liquid Metal Processing and Casting, Austin, TX, 2013, pp. 29–36.Google Scholar
  11. 11.
    Levkov, L.Ya., Shurygin, D.A., Skorobogatih, V.N., Shchenkova, I.A., Kriger, Yu.N., Bazhenov, A.M., Utkina, K.N., and Ivanov, I.A., Metallurgist, 2017, vol. 60, no. 11, pp. 1155–1160.CrossRefGoogle Scholar
  12. 12.
    Skorobogatykh, V.N., Levkov, L.Ya., Shchenkova, I.A., Bazhenov, A.M., Prudnikov, D.A., Zadoinyi, V.A., and Starkovskii, G.L., Elektr. Stn., 2017, no. 4, pp. 6–14.Google Scholar
  13. 13.
    Utkina, K.N., Balikoev, A.G., Levkov, L.Ya., Dub, V.S., Efimov, V.M., Kalugin, D.A., Kozlov, P.A., Terekhin, D.K., and Teplyakova, E.A., Sbornik dokladov “19-oi konferentsii molodykh spetsialistov po yadernym energeticheskim ustanovkam”, (Proc. 19th Conference of Young Scientists on Nuclear-Power Plants), Podolsk, April 12–13, 2017, pp. 351–360.Google Scholar
  14. 14.
    Lazukin, A.V., Shurygin, D.A., and Krivov, S.A., Proc. Int. Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), St. Petersburg, 2017, pp. 1–4.Google Scholar
  15. 15.
    GOST (State Standard) no. 5639-82: Steels and Alloys. Methods for Detection and Determination of Grain Size, Moscow: Izd. Standartov, 2003.Google Scholar
  16. 16.
    Kriegseis, J., Möller, B., Grundmann, S., and Tropea, C., J. Electrost., 2011, vol. 69, pp. 302–312.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Lazukin
    • 1
    • 2
    Email author
  • S. A. Krivov
    • 1
  • D. A. Shurygin
    • 2
  • I. V. Selivonin
    • 1
    • 3
  • A. M. Nikitin
    • 1
  • E. M. Simich–Lafitskaya
    • 2
  • A. S. Gudenko
    • 2
  • A. A. Korneev
    • 2
  • I. A. Moralev
    • 3
  1. 1.National Research University Moscow Power Engineering InstituteMoscowRussia
  2. 2.JSC RPA CNIITMASHMoscowRussia
  3. 3.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations