Advertisement

Effect of Phenols on Biological Zinc Corrosion

  • A. A. KalininaEmail author
  • M. V. Temnova
  • T. N. Sokolova
  • O. V. Kuzina
  • E. N. Razov
  • V. R. Kartashov
MICROBIAL CORROSION
  • 7 Downloads

Abstract

It has been shown that treating a zinc surface with phenols (phenol, 2,6-di-tert-butyl-4-methylphenol (ionol), hydroquinone, pyrocatechol, 3,5-di-tert-butyl-pyrocatechol) increased the corrosive damage of the metal caused by microorganisms. It has been suggested that corrosion stimulation was caused by radical processes involving phenols adsorbed on the metal surface and products of oxygen biotransformation by microorganisms.

Keywords:

organotrophic bacteria zinc micromycetes biological corrosion phenols activation of biocorrosion reactive oxygen species 

Notes

REFERENCES

  1. 1.
    Updegraff, D.M., Corrosion, 1955, vol. 11, no. 10, p. 44.CrossRefGoogle Scholar
  2. 2.
    Little, B.J. and Lee, J.S., Int. Mater. Rev., 2014, vol. 59, no. 7, p. 384.CrossRefGoogle Scholar
  3. 3.
    Kan, J., et al., J. Appl. Microbiol., 2011, vol. 111, p. 329.CrossRefGoogle Scholar
  4. 4.
    Javaherdashti, R., Microbiologically Influenced Corrosion - An Engineering Insight, London: Springer, 2008.Google Scholar
  5. 5.
    Little, B.J. and Lee, J.S., Microbiologically Influenced Corrosion, Hoboken, NJ: John Wiley and Sons, 2007.CrossRefGoogle Scholar
  6. 6.
    Emerson, D., et al., Annu. Rev. Microbiol., 2010, vol. 63, p. 561.CrossRefGoogle Scholar
  7. 7.
    Li, K., Whitfield, M., and Van Vliet, K.J., Corros. Rev., 2013, vol. 31, p. 73.CrossRefGoogle Scholar
  8. 8.
    Karpov, V.A., Beleneva, I.A., Kharchenko, U.V., and Zhukova, N.V., Korroz.: Mater., Zashch., 2010, no. 6, pp. 40–47.Google Scholar
  9. 9.
    Hall-Stoodley, L., Costerton, J.W., and Stoodley, P., Nat. Rev. Microbiol., 2004, vol. 2, p. 95.CrossRefGoogle Scholar
  10. 10.
    Flemming, H.-C. and Wingender, J., Nat. Rev. Microbiol., 2010, vol. 8, p. 623.CrossRefGoogle Scholar
  11. 11.
    Taylor, P.K., et al., J. Biotechnol., 2014, vol. 191, pp. 121–130.CrossRefGoogle Scholar
  12. 12.
    Neu, T.R., Manz, B., et al., FEMS Microbiol. Ecol., 2010, vol. 72, p. 1.CrossRefGoogle Scholar
  13. 13.
    Chelnokova, M.V., Belov, D.V., Kalinina, A.A., Sokolova, T.N., Smirnov, V.F., and Kartashov, V.R., Korroz.: Mater., Zashch., 2011, no. 3, pp. 19–26.Google Scholar
  14. 14.
    Belov, D.V., Kalinina, A.A., Sokolova, T.N., Kuzina, O.V., and Kartashov, V.R., Korroz.: Mater., Zashch., 2011, no. 7, pp. 42–47.Google Scholar
  15. 15.
    Belov, D.V., Kalinina, A.A., Sokolova, T.N., Smir-nov, V.F., Chelnokova, M.V., and Kartashov, V.R., Prikl. Biokhim. Mikrobiol., 2012, vol. 48, no. 3, p. 302.Google Scholar
  16. 16.
    Belov, D.V., Chelnokova, M.V., Sokolova, T.N., Smirnov, V.F., and Kartashov, V.R., Korroz.: Mater., Zashch., 2009, no. 11, pp. 43–48.Google Scholar
  17. 17.
    Auchere, F. and Rusnak, F., J. Biol. Inorg. Chem., 2002, vol. 7, p. 664.CrossRefGoogle Scholar
  18. 18.
    Cabiscol, E., Tamarit, J., and Ros, J., Int. Microbiol., 2000, vol. 3, p. 3.Google Scholar
  19. 19.
    Nepryakhina, O.K., Kuznetsova, A.Yu., Lyamzaev, K.G., Izyumov, D.S., Pletjushkina, O.Yu., Chernyak, B.V., and Skulachev, V.P., Dokl. Biol. Sci., 2008, vol. 420, no. 4, p. 221.CrossRefGoogle Scholar
  20. 20.
    Skulachev, V.P., Biochemistry (Moscow), 1998, vol. 63, no. 11, pp. 1335–1343.Google Scholar
  21. 21.
    Radostin, S.Yu., Kalinina, A.A., Sokolova, T.N., Kartashov, V.R., Razov, E.N., and Smirnov, V.F., Korroz.: Mater., Zashch., 2017, no. 4, pp. 42–47.Google Scholar
  22. 22.
    Sawyer, D.T. and Gibian, M.J., Tetrahedron, 1979, vol. 35, p. 1471.CrossRefGoogle Scholar
  23. 23.
    Bielski, B.H.J., Cabelli, D.E., Arudi, R.L., and Ross, A.B., J. Phys. Chem. Ref. Data, 1985, vol. 14, no. 4, p. 1041.CrossRefGoogle Scholar
  24. 24.
    Nanni, E.J., Stallings, M.D., and Sawyer, D.T., J. Am. Chem. Soc., 1980, vol. 102, no. 13, p. 4481.CrossRefGoogle Scholar
  25. 25.
    Malovskaya, L.A., Petrikevich, D.K., Timoshchuk, V.A., and Shadyro, O.I., Russ. J. Gen. Chem., 1996, vol. 66, no. 11, p. 1842.Google Scholar
  26. 26.
    Lugauskas, A., Prosycevas, I., Ramanauskas, R., Griguceviciene, A., Selskiene, A., and Pakstas, V., Mater. Sci., 2009, vol. 15, no. 3, p. 224.Google Scholar
  27. 27.
    Kalinina, A.A., Radostin, S.Yu., Khlopin, S.Yu., Sokolova, T.N., Moskvichev, A.N., Razov, E.N., and Kartashov, V.R., Korroz.: Mater., Zashch., 2014, no. 3, pp. 44–47.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Kalinina
    • 1
    Email author
  • M. V. Temnova
    • 1
  • T. N. Sokolova
    • 1
  • O. V. Kuzina
    • 1
  • E. N. Razov
    • 2
  • V. R. Kartashov
    • 1
  1. 1.Nizhny Novgorod State Technical University Named after R.E. AlekseevNizhny NovgorodRussia
  2. 2.Blagonravov Institute of Machines Science, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations