Advertisement

The Effects of Heat Treatment on the Corrosion Behavior of HVOF-sprayed WC-17 wt % Co Coatings

  • Shahin Khameneh AslEmail author
  • Taher Rabizadeh
  • Neda Faale Noori
NEW SUBSTANCES, MATERIALS AND COATINGS
  • 17 Downloads

Abstract

A WC-17 wt % Co coating was deposited onto a ST37 mild steel substrate by HVOF-spray technique and then vacuum heat treated at 1100°C. The cross sectional microstructure of the produced coating was characterized before and after heat treatment by optical microscopy. X-ray diffraction (XRD) was also utilized to evaluate the effects of heat treatment on the phase composition of the WC-17Co coating. To study the electrochemical corrosion behavior of both as-produced and heat treated samples, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods were performed in 3.5 wt % NaCl solution. Our results reveal that the WC-17Co coating had a dense structure with an average thickness of about ~500 μm. However, heat treating the coating resulted in an adhesion failure and therefore partial separation of the coating from the substrate. The as-produced coating was also composed of both crystalline WC and amorphous phases whilst the heat treated layer was fully crystalline. According to the corrosion tests, the WC-17Co coating improved the corrosion resistance of the substrate. However, heat treating the coating at 1100°C decreased anticorrosion performance which was due to the precipitation of η-phases with different electrochemical potential than the WC phase together with the formation of microgalvanic cells between the crystalline phases with different compositions.

Keywords:

HVOF coatings WC-Co microstructure XRD amorphous phase transition, corrosion resistance EIS 

REFERENCES

  1. 1.
    Karabaş, M., Bal, E., and Taptik, Y., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 859.CrossRefGoogle Scholar
  2. 2.
    Kayali, Y., Aslan, O., Karabaş, M., and Talaş, Ş., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p. 1079.CrossRefGoogle Scholar
  3. 3.
    Priyan, M.S. and Hariharan, P., Int. J. Surf. Sci. Eng., 2013, vol. 7, p. 250.CrossRefGoogle Scholar
  4. 4.
    Espallargas, N., Berget, J., Guilemany, J., Benedetti, A.V., and Suegama, P., Surf. Coat. Technol., 2008, vol. 202, p. 1405.CrossRefGoogle Scholar
  5. 5.
    Herrmann, M., Toma, F.L., Berger, L.M., Kaiser, G., and Stahr, C., J. Eur. Ceram. Soc., 2014, vol. 34, p. 493.CrossRefGoogle Scholar
  6. 6.
    Saricimen, H., Quddus, A., and Ul-Hamid, A., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 391.CrossRefGoogle Scholar
  7. 7.
    Quintana, M.J., Gonzalez, R., Fernandez, D., and Verdeja, L.F., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 373.CrossRefGoogle Scholar
  8. 8.
    Xie, Y., Pei, X., and Wei, S., Int. J. Surf. Sci. Eng., 2016, vol. 10, p. 365.CrossRefGoogle Scholar
  9. 9.
    Somasundaram, B., Kadoli, R., Ramesh, M., and Ramesh, C., Int. J. Surf. Sci. Eng., 2016, vol. 10, p. 400.CrossRefGoogle Scholar
  10. 10.
    Cho, J., Hwang, S., and Kim, K., Surf. Coat. Technol., 2006, vol. 200, p. 2653.CrossRefGoogle Scholar
  11. 11.
    Bolelli, G., Cannillo, V., Lusvarghi, L., and Ricco, S., Surf. Coat. Technol., 2006, vol. 200, p. 2995.CrossRefGoogle Scholar
  12. 12.
    Basak, A.K., Celis, J.P., Vardavoulias, M., and Matteazzi, P., Surf. Coat. Technol., 2012, vol. 206, p. 3508.CrossRefGoogle Scholar
  13. 13.
    Bolelli, G., Giovanardi, R., Lusvarghi, L., and Manfredini, T., Corros. Sci., 2006, vol. 48, p. 3375.CrossRefGoogle Scholar
  14. 14.
    Perry, J., Neville, A., Wilson, V., and Hodgkiess, T., Surf. Coat. Technol., 2001, vol. 137, p. 43.CrossRefGoogle Scholar
  15. 15.
    Souza, V. and Neville, A., Mater. Sci. Eng., A, 2003, vol. 352, p. 202.CrossRefGoogle Scholar
  16. 16.
    Perry, J.M., Hodgkiess, T., and Neville, A., J. Therm. Spray Technol., 2002, vol. 11, p. 536.CrossRefGoogle Scholar
  17. 17.
    Oliveira, A.B., Bastos, A.C., Fernandes, C.M., Pinho, C.M.S., Senos, A.M.R., Soares, E., Sacramento, J., Zheludkevich, M.L., and Ferreira, M.G.S., Corros. Sci., 2015, vol. 100, p. 322.CrossRefGoogle Scholar
  18. 18.
    Rad, M.H., Ahmadian, M., and Golozar, M., Int. J. Refract. Met. Hard Mater., 2012, vol. 35, p. 62.CrossRefGoogle Scholar
  19. 19.
    Potgieter, J., Thanjekwayo, N., Olubambi, P., Maledi, N., and Potgieter-Vermaak, S., Int. J. Refract. Met. Hard Mater., 2011, vol. 29, p. 478.CrossRefGoogle Scholar
  20. 20.
    Kellner, F., Hildebrand, H., and Virtanen, S., Int. J. Refract. Met. Hard Mater., 2009, vol. 27, p. 806.CrossRefGoogle Scholar
  21. 21.
    Marginean, G. and Utu, D., Surf. Coat. Technol., 2010, vol. 205, p. 1985.CrossRefGoogle Scholar
  22. 22.
    Khameneh Asl, S., Beyragh, S., Reza, M., and Noori, N.F., Mater. Sci. Forum, 2011, vol. 673, p. 167.CrossRefGoogle Scholar
  23. 23.
    Al-Mutairi, S., Hashmi, M., Yilbas, B., and Stokes, J., Surf. Coat. Technol., 2015, vol. 264, p. 175.CrossRefGoogle Scholar
  24. 24.
    Couto, M., Dosta, S., and Guilemany, J., Surf. Coat. Technol., 2015, vol. 268, p. 180.CrossRefGoogle Scholar
  25. 25.
    Rabizadeh, T., Allahkaram, S.R., and Zarebidaki, A., Mater. Des., 2010, vol. 31, p. 3174.CrossRefGoogle Scholar
  26. 26.
    Aw, P.K., Tan, A.L.K., Tan, T.P., and Qiu, J., Thin Solid Films, 2008, vol. 516, p. 5710.CrossRefGoogle Scholar
  27. 27.
    Berget, J., Rogne, T., and Bardal, E., Surf. Coat. Technol., 2007, vol. 201, p. 7619.CrossRefGoogle Scholar
  28. 28.
    Li, C., Ohmori, A., and Harada, Y., J. Therm. Spray Technol., 1996, vol. 5, p. 69.CrossRefGoogle Scholar
  29. 29.
    Kunying, D., Lijun, W., Zhen, S., and Yankuan, L., Rare Met. Mater. Eng., 2014, vol. 43, p. 2365.CrossRefGoogle Scholar
  30. 30.
    Bakare, M., Voisey, K., Chokethawai, K., and McCartney, D., J. Alloys Compd., 2012, vol. 527, p. 210.CrossRefGoogle Scholar
  31. 31.
    Zhang, C., Guo, R., Yang, Y., Wu, Y., and Liu, L., Electrochim. Acta, 2011, vol. 56, p. 6380.CrossRefGoogle Scholar
  32. 32.
    Khameneh Asl, S., Sohi, M.H., Hokamoto, K., Matsuda, M., Tomoshige, R., and Nishida, M., Mater. Sci. Forum, 2008, vol. 566, p. 161.CrossRefGoogle Scholar
  33. 33.
    Murariu, A.C., Pleșu, N., and Perianu, I.A., Int. J. Electrochem. Sci., 2015, vol. 12, p. 1535.Google Scholar
  34. 34.
    Cui, X.Y., Wang, C.B., Kang, J.J., Yue, W., Fu, Z.Q., and Zhu, L.N., Eng. Failure Anal., 2017, vol. 71, p. 195.CrossRefGoogle Scholar
  35. 35.
    Kharmachi, I., Dhouibi, L., Berçot, P., Rezrazi, M., and Lakard, B., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 1059.CrossRefGoogle Scholar
  36. 36.
    Zarebidaki, A., Seifoddini, A., and Rabizadeh, T., J. Alloys Compd., 2018, vol. 736, p. 17.CrossRefGoogle Scholar
  37. 37.
    Li, W., Cui, N., and Luo, J., Electrochim. Acta, 2004, vol. 49, p. 1663.CrossRefGoogle Scholar
  38. 38.
    Wen, Z., Bai, Y., Yang, J., and Huang, J., J. Alloys Compd., 2017, vol. 711, p. 659.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Shahin Khameneh Asl
    • 1
    Email author
  • Taher Rabizadeh
    • 1
  • Neda Faale Noori
    • 1
  1. 1.Department of Materials Engineering, Faculty of Mechanical Engineering, University of TabrizTabrizIran

Personalised recommendations