Advertisement

First-Principles Study on Properties of the Native Defects in Al2O3(110) Surface

  • Jianping Zeng
  • Gang Wu
  • Wenyan Shi
  • Song ChenEmail author
PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • 14 Downloads

Abstract

Using the CASTEP module in Materials Studio software, the native defect model structures including O vacancy and Al vacancy in Al2O3(110) surface were designed and constructed. Through first-principles based on density functional theory (DFT) and pseudo potential method, the Al2O3(110) model structures were optimized. Formation energy, energy state structure, electric density and electron population of defect structures and primitive cell were calculation. Effect of O vacancy and Al vacancy on Al2O3 properties could be analyzed and probed. The results showed that formation energy of O vacancy is only 0.06 eV, which is significantly less than that of Al vacancy (2.99 eV). This indicates that the formation of O vacancy is more easily to produce. O vacancy defects reduce electronic energy in Al2O3(110), and make its conductivity become poorer. The impact of Al vacancy defects on conductivity are opposite. The influence of aluminum vacancy defects on electron density in Al2O3(110) is more than that of oxygen vacancy; oxygen vacancy increases the electronegativity around O atoms, and weakens electropositivity around Al atoms the electricity, which makes the top of energy band structure move down. The calculation results provide a theoretical guidance for the formation of functional anodic oxidation films of Al.

Keyword:

Al2O3 first-principles defect formation energy electron properties 

Notes

FUNDING

This work is financially supported by the Industry-University-Research Cooperation Project of Jiangsu Province in 2018 (no. BY2018276).

REFERENCES

  1. 1.
    Cui, X., Wu, Y., Liu, X., Zhao, Q., and Zhang, G., Mater. Des., 2015, vol. 86, p. 397.CrossRefGoogle Scholar
  2. 2.
    Armelin, E., Whelan, R., Martínez-Triana, Y.M., Alemán, C., Finn, M.G., and Díaz, D.D., ACS Appl. Mater. Interfaces, 2017, vol. 9. p. 4231.CrossRefGoogle Scholar
  3. 3.
    Saleema, N., Sarkar, D.K., Gallant, D., Paynter, R.W., and Chen, X.G., ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 4775.CrossRefGoogle Scholar
  4. 4.
    Cui, X., Wu, Y., Zhang, G., Liu, Y., and Liu, X., Composites, Part B, 2017, vol. 110, p. 381,CrossRefGoogle Scholar
  5. 5.
    Shin, J.S., Ko, S.H., and Kim, K.T., J. Alloys Compd., 2015, vol. 644, p. 673.CrossRefGoogle Scholar
  6. 6.
    Ji, Y., Wang, F, Gu, Z., and Gong, X., Chemistry, 2014, vol. 77, p. 236.Google Scholar
  7. 7.
    Ebrahimi, S., Ghafoori-Tabrizi, K., and Rafii-Tabar, H., Comput. Mater. Sci., 2013, vol. 71, p. 172.CrossRefGoogle Scholar
  8. 8.
    Zhang, S., Liu, F., and Cheng, X., J. Yibin Univ., 2011, vol. 11, p. 77.Google Scholar
  9. 9.
    Wang, Y., Zhang, X., Zhao, L., Zhao, X., Shi, B., and Fan, C., Chem. J. Chin. Univ., 2014, vol. 35, p. 2624.Google Scholar
  10. 10.
    Du, Y., Chang, B., and Wang, H., Chin. Opt. Lett., 2012, vol. 10, p. 39.Google Scholar
  11. 11.
    Feng, Q., Wang, X., and Liu, G., J. At. Mol. Phys. (Chengdu, China), 2008, vol. 25, p. 1096.Google Scholar
  12. 12.
    Ma, X., Jiang, J., and Liang, P., Acta Phys. Sin., 2008, vol. 57, p. 3120.Google Scholar
  13. 13.
    Liu, B., Ma, Y., and Zhou, Y., Acta Phys. Sin., 2010, vol. 59, p. 3577.Google Scholar
  14. 14.
    Hine, N.D.M., Frensch, K., Foulkes, W.M.C., and Finnis, M.W., Phys. Rev. B, 2009, vol. 79, p. 1.CrossRefGoogle Scholar
  15. 15.
    Chang, Q., Liu, T., and Ma, C., Sci. China Chem., 2016, vol. 46, p. 394.Google Scholar
  16. 16.
    Xiang, X., Zhang, G., Wang, X., Tang, T., and Shi, Y., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 29134.CrossRefGoogle Scholar
  17. 17.
    Choi, M., Janotti, A., and Van de Walle, C.G., J. Appl. Phys., 2013, vol. 113, p. 044501.CrossRefGoogle Scholar
  18. 18.
    Yang, C., Yu, Y., Li, Y., and Liu, Y., Chin. J. Chem. Phys., 2004, vol. 17, p. 537.Google Scholar
  19. 19.
    Zhang, W., Xu, Z.P., Wang, H.Y., Chen, F.H., and He, C., Acta Phys. Sin., 2013, vol. 62, p. 243101.Google Scholar
  20. 20.
    Van de Walle, C.G. and Neugebauer, J., J. Appl. Phys., 2004, vol. 95, p. 3851.CrossRefGoogle Scholar
  21. 21.
    Liu, R., Teng, B.T., Quan, J.L., Lang, J.J., and Luo, M., Acta Phys. -Chim. Sin., 2013, vol. 29, p. 271.CrossRefGoogle Scholar
  22. 22.
    Lou, Z.C., Zhang, G.Y., Liang, T., Li, D., and Zhu, S.L., J. Shenyang Norm. Univ., Nat. Sci. Ed., 2010, vol. 28, p. 189.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Jianping Zeng
    • 1
    • 2
    • 3
  • Gang Wu
    • 1
  • Wenyan Shi
    • 1
  • Song Chen
    • 1
    Email author
  1. 1.School of Chemistry and Chemical Engineering, Yancheng Institute of TechnologyYanchengP.R. China
  2. 2.Research School of Chemistry, The Australian National UniversityCanberraAustralia
  3. 3.Jiangsu Zhongzhan Vehicle Parts Co., LtdYanchengP.R. China

Personalised recommendations