Perpendicular Weak Permanent Magnetic Field Effect on the Electrodeposited Nanostructured ZnO Film and its Kinetic Corrosion Behavior

  • Samia Taleb
  • Nahed Dokhan
  • Nacer ZaziEmail author
  • Jean-Paul Chopart


In this work the effect of the permanent weak magnetic field on the electrodeposited ZnO nanostructured film on the ITO substrate elaborated under –0.5 and –0.8 V was studied. The deposits have been characterized by SEM, EDX, and electrochemical tests. The obtained results showed the increase of crystallites dimension in the presence of magnetic field under –0.5 V, and the decrease of the number of large crystallites of ZnO deposits under potential deposition equal to –0.8 V. The deposition under weak magnetic field change the current deposition, the open circuit potential (OCP), the polarization curve parameters after one week of corrosion and crystallographic parameters.


permanent magnetic field ZnO deposits electrodeposits crystallographic parameters corrosion 


  1. 1.
    Bozkurt, I., WSEAS Trans. Environ. Dev., 2010, vol. 6, no. 5, pp. 327–334.Google Scholar
  2. 2.
    Zhang, H., Li, Y., Wang, Y., Liu, P., Yang, H., Yao, X., An, T., Wood, B.J., and Zhao, H., J. Mater. Chem. A, 2013. vol. 1, no. 22, pp. 6563–6571.CrossRefGoogle Scholar
  3. 3.
    Grätzel, M., Nature, 2001, vol. 414, pp. 338–344.CrossRefGoogle Scholar
  4. 4.
    Wang, C.T., Ro, S.H., Jao, C.S., Tsai, M.K., and Yang, S.Y., J. Non-Cryst. Solids, 2010, vol. 356, nos. 18–19, pp. 873–878.CrossRefGoogle Scholar
  5. 5.
    Wang, Z.L., J. Phys.: Condens. Matter, 2004, vol. 16, pp. R829–R858.Google Scholar
  6. 6.
    Natsume, Y. and Sakata H., Mater. Chem. Phys., 2003, vol. 78, p. 170.CrossRefGoogle Scholar
  7. 7.
    Jin, Y., Wang, J., Sun, B., Blakesley, J.C., and Greenham, N.C., Nano Lett., 2008, vol. 8, p. 1649.CrossRefGoogle Scholar
  8. 8.
    Data in Science and Technology: Semiconductors, Madelung, O., Ed., Berlin: Springer, 1992.Google Scholar
  9. 9.
    Plain, D.C., Yeom, H.Y. and Yaglioglu, B., in Flexible Flat Panel Displays, Crawford, G.P., Ed., Singapore: John Wiley and Sons, 2005, p. 94.Google Scholar
  10. 10.
    Tang, P.E., Sakamoto, J.S., Baudrin, E., and Dunn, B., J. Non-Cryst. Solids, 2004, vol. 350, p. 67.CrossRefGoogle Scholar
  11. 11.
    Pietron, J.J., and Rolison, D.R., J. Non-Cryst. Solids, 2004, vol. 350, p. 107.CrossRefGoogle Scholar
  12. 12.
    Tolosa, M.D.R., Messana, J.O., Lima, A.N.C., Camaratta, R., Pascual, M., and Hernandez-Fenollosa, M.A., J. Electrochem. Soc., 2011, vol. 158, no. 11, pp. E107–E110.CrossRefGoogle Scholar
  13. 13.
    Coşkun, C., Güney, H., Gür, E. and Tüzemen, S., Turk. J. Phys., 2009, vol. 33, pp. 49–56.Google Scholar
  14. 14.
    Benaissa, M., Daltin, A.L., Gilliot, M., and Chopart, J.P., Proc. 8th Int. Conference on Electromagnetic Processing of Materials, Cannes, 2015.Google Scholar
  15. 15.
    Morisue, M., Nambu, M., Osaki, H., and Fukunaka, Y., J. Solid State Electrochem., 2007, vol. 11, pp. 719–726.CrossRefGoogle Scholar
  16. 16.
    Nikolić, N.D., J. Serb. Chem. Soc., 2005, vol. 70, p. 1213.CrossRefGoogle Scholar
  17. 17.
    Devos, O., Aaboubi, O., Chopart, J.-P., and Olivier, A., J. Phys. Chem. A, 2000, vol. 104, p. 1544.CrossRefGoogle Scholar
  18. 18.
    Devos, O., Oliver, A., Chopart, J.P., Aaboubi, O., and Maurin, C., J. Electrochem. Soc., 1998, vol. 145, p. 401.CrossRefGoogle Scholar
  19. 19.
    Waskaas, M. and Kharkats, Y.I., J. Phys. Chem. B, 1999, vol. 103, pp. 4876–4883.CrossRefGoogle Scholar
  20. 20.
    Tacken, R.A. and Janssen, L.J.J., J. Appl. Electrochem., 1995, vol. 25, p. 1.CrossRefGoogle Scholar
  21. 21.
    Rabah, K.L., Chopart, J.-P., Schloerb, H., Saulnier, S., Aaboubi, O., Uhlemann, M., Elmi, D., and Amblard, J., J. Electroanal. Chem., 2004, vol. 57, no. 1, pp. 85–91.CrossRefGoogle Scholar
  22. 22.
    Slimani, R., Zazi, N., and Chopart, J.-P., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, pp. 111–118.CrossRefGoogle Scholar
  23. 23.
    Zazi, N., Chopart, J.-P., and Bilek, A., Mater. Technol., 2016, vol. 50, no. 2, pp. 165–173.Google Scholar
  24. 24.
    Levesque, A., Chouchane, S., Douglade, J., et al., Appl. Surf. Sci., 2009, vol. 255, p. 8048.CrossRefGoogle Scholar
  25. 25.
    Ispas, A., Matsushima, H., Plieth, W., and Bund, A., Electrochim. Acta, 2007, vol. 52, p. 2785.CrossRefGoogle Scholar
  26. 26.
    Altıokka, B. and Yıldırım, A.K., Arabian J. Sci. Eng., 2016, vol. 41, pp. 2345–2351.CrossRefGoogle Scholar
  27. 27.
    Kim, T.H., Nam, S.H., Park, H.S., Song, J.K., and Park, S.M., Appl. Surf. Sci., 2007, vol. 253, pp. 8054–8058.CrossRefGoogle Scholar
  28. 28.
    Nambu, M., Kusaka, E., Fukunaka, Y. and Ishii, R., Proc. Joint Int. Meeting, 2004.Google Scholar
  29. 29.
    Muresan, L., Oniciu, L., Froment, M., and Murin, G., Electrochim. Acta, 1992, vol. 37, no. 12, pp. 2249–2254.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Samia Taleb
    • 1
  • Nahed Dokhan
    • 1
  • Nacer Zazi
    • 2
    Email author
  • Jean-Paul Chopart
    • 3
  1. 1.Research Unit, Materials, Processing and Environment, University M’Hamed BougaraBoumerdesAlgeria
  2. 2.Laboratoire Mécanique Structure Energétique, Département de Génie Mécanique, Université Mouloud MammeriTiziOuzouAlgeria
  3. 3.LISM EA 4695 UFR SEN, BP1039, Université de Reims Champagne Ardenne, Moulin de la Housse, CedexReimsFrance

Personalised recommendations