Electrochemical and Structural Studies of Nanodiamond Composites

  • V. E. Sosenkin
  • A. E. Aleksenko
  • A. Yu. Rychagov
  • N. A. MayorovaEmail author
  • M. A. Ovchinnikov-Lazarev
  • B. V. Spitsyn
  • Yu. M. Vol’fkovichEmail author


The method of detonation synthesis is used to obtain nanodiamond composites (NDCs), and electrochemical and porosimetric studies are carried out for some NDC samples containing both a nanodiamond powder fraction and a nondiamond carbon fraction. Samples of untreated detonation soot (NDC-1) and products of its gas-phase purification (NDC-2 and NDC-3) with different ratio of nanodiamond and nondiamond carbon are studied. The content of the latter in the NDC-1, NDC-2, and NDC-3 samples is 48, 24, and 1 wt %, respectively. It is shown that the intensity of Raman bands of crystalline graphite (1580 cm–1) and disordered graphite phase (1360 cm–1) is higher in the initial detonation soot, as compared to samples partially or completely purified from nondiamond carbon. Here, the specific resistance of the samples increases in the series NDC-1 < NDC-2 < NDC-3, i.e., at an increase in the share of the nanodiamond fraction. The method of standard contact porosimetry shows that samples are characterized by high values of both overall specific (1040–1290 m2 g–1) and hydrophilic specific surface area and that the degree of NDC hydrophilicity decreases at an increase in the nanodiamond concentration. The CV curves of NDC samples have a shape typical for double electric layer charging complicated by ohmic losses growing at an increase in the nanodiamond fraction. Nanodiamond boration results in a decrease in its specific resistance and in its significant hydrophilization. The data of impedance measurements for NDC-1 and NDC-2 samples show that a decrease in the fraction of conducting carbon is accompanied by a significant decrease in capacitance. Studies of oxygen electroreduction on the Pt/NDC-1 catalytic system demonstrate its stability in time, which is probably related to a decrease in the aggregation degree of platinum particles due to the lower corrosion rate of the nanodiamond powder support as compared to standard carbon blacks. Thus, some of the studied NDC samples are promising as supports of oxygen reduction catalysts.


nanodiamond composite Raman spectra impedance standard contact porosimetry oxygen electroreduction 



Raman spectra were obtained by A.A. Averin using the equipment of the Center for Collective Use of Physical Research Techniques of the Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences. The authors are grateful to A.M. Grechikhina for her help in the processing of the paper.


The work was supported by the State task for the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, theme no. 47.23, state registration no. АААА-А18-118012490284-4.


  1. 1.
    Volkov, K.V., Danilenko, V.V., and Elin, V.I., Fiz. Goreniya Vzryva, 1990, vol. 26, no. 3, p. 123.Google Scholar
  2. 2.
    Dolmatov, V.Yu., Detonatsionnye nanoalmazy (Detonation Nano-Diamonds), St. Petersburg: NPO Professional, 2011.Google Scholar
  3. 3.
    Ovchinnikov-Lazarev, M.A., Koroleva, M.Yu., and Spitsyn, B.V., Usp. Khim. Khim. Tekhnol., 2017, vol. 31, no. 13 (194), p. 48.Google Scholar
  4. 4.
    Pleskov, Yu.V., Elektrokhimiya almaza (Electrochemistry of Dimond), Moscow: Editorial URSS, 2003.Google Scholar
  5. 5.
    Pleskov, Yu., in Electrochemistry of Diamond, Fujishima, A., Einaga, Y., Rao, T.N., and Tryk, D.A., Eds., Tokyo: BKC, Amsterdam: Elsevier, 2005.Google Scholar
  6. 6.
    Pleskov, Yu.V., Sakharova, A.Ya., Krotova, M.D., et al., J. Electroanal. Chem., 1987, vol. 228, nos. 1–2, p. 19.CrossRefGoogle Scholar
  7. 7.
    Bagotsky, V.S., Fuel Cell Problems and Solutions, Hoboken, NJ: John Wiley and Sons, 2009.Google Scholar
  8. 8.
    Subban, C., Zhou, Q., Leonard, B., et al., Philos. Trans. R. Soc., A, 2010, vol. 368, p. 3243.Google Scholar
  9. 9.
    Soo, L.T., Loh, K.S., Mohamad, A.B., et al., Appl. Catal., A, 2015, vol. 497, p. 198.Google Scholar
  10. 10.
    Samad, S., Loh, K.S., Wong, W.Y., et al., Int. J. Hydrogen Energy, 2018, vol. 43, no. 16, p. 7823.CrossRefGoogle Scholar
  11. 11.
    Montilla, F., Morallón, E., Duo, I., et al., Electrochim. Acta, 2003, vol. 48, nos. 25–26, p. 3891.CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Zang, J., Dong, L., et al., Electrochim. Acta, 2013, vol. 113, p. 583.CrossRefGoogle Scholar
  13. 13.
    Zhang, Y., Wang, Y., Bian, L., et al., Int. J. Hydrogen Energy, 2016, vol. 41, p. 4624.CrossRefGoogle Scholar
  14. 14.
    Shao, Y., Liu, J., Wang, Y., and Lin, Y., J. Mater. Chem., 2009, vol. 19, p. 46.CrossRefGoogle Scholar
  15. 15.
    Alexenko, A.E., et al., Diamond Relat. Mater., 1992, vol. 1, p. 705.CrossRefGoogle Scholar
  16. 16.
    Sadezky, A., Muckenhuber, H., Grot, H., et al., Carbon, 2005, vol. 43, p. 1731.CrossRefGoogle Scholar
  17. 17.
    Vol’fkovich, Yu.M. and Sosenkin, V.E., Usp. Khim., 2012, vol. 81, p. 936.CrossRefGoogle Scholar
  18. 18.
    Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, London: Springer, 2014.CrossRefGoogle Scholar
  19. 19.
    Dzyazko, Yu.S., Volfkovich, Yu.M., Sosenkin, V.E., et al., Nanoscale Res. Lett., 2014, vol. 9, p. 271.CrossRefGoogle Scholar
  20. 20.
    Rouquerol, J., Baron, G., Denoyel, R., et al., Pure Appl. Chem., 2011, vol. 84, p. 107.CrossRefGoogle Scholar
  21. 21.
    Kheifets, L.I. and Neimark, A.V., Mnogofaznye protsessy v poristykh sredakh (Multi-Phase Processes in Porous Media), Moscow: Khimiya, 1982, p. 98.Google Scholar
  22. 22.
    Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., and Bagotsky, V.S., J. Solid State Electrochem., 2014, vol. 18, no. 5, p. 1351.CrossRefGoogle Scholar
  23. 23.
    Conway, B.E., Electrochemical Supercapacitors. Scientific Fundamentals and Technological Applications, New York: Kluwer Academic/Plenum Publ., 1999.Google Scholar
  24. 24.
    Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984.Google Scholar
  25. 25.
    Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, and Supercapacitors, Hoboken, NJ: John Wiley and Sons, 2015.Google Scholar
  26. 26.
    Schmidt, T.J., Paulus, U.A., Gasteiger, H.A., and Behm, R.J., J. Electroanal. Chem., 2001, vol. 508, nos. 1–2, p. 41.CrossRefGoogle Scholar
  27. 27.
    Zhang, J., Carter, R.N., Yu, P.T., Gu, W., and Gasteiger, H.A., in Encyclopedia of Electrochemical Power Sources, Elsevier, 2009, p. 626.Google Scholar
  28. 28.
    Wang, X., Li, W., Chen, Z., et al., J. Power Sources, 2006, vol. 158, no. 1, p. 154.CrossRefGoogle Scholar
  29. 29.
    Hara, M., Lee, M., Liu, C.-H., et al., Electrochim. Acta, 2012, vol. 70, p. 171.CrossRefGoogle Scholar
  30. 30.
    Kameya, Y., Hayashi, T., and Motosuke, M., Appl. Catal., B, 2016, vol. 189, p. 219.CrossRefGoogle Scholar
  31. 31.
    Sakthivel, M. and Drillet, J.-F., Appl. Catal., B, 2018, vol. 231, p. 63.CrossRefGoogle Scholar
  32. 32.
    Blaut-Blachev, A.N., Averin, A.A., Shapagin, A.V., and Spitsyn, B.V., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 1, p. 75.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. E. Sosenkin
    • 1
  • A. E. Aleksenko
    • 1
  • A. Yu. Rychagov
    • 1
  • N. A. Mayorova
    • 1
    Email author
  • M. A. Ovchinnikov-Lazarev
    • 1
  • B. V. Spitsyn
    • 1
  • Yu. M. Vol’fkovich
    • 1
    Email author
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations