Advertisement

The Enhancement of Wear Properties of Compo-Cast A356 Composites Reinforced with SiC nano Particulates

  • Mohsen Ostad ShabaniEmail author
  • Fatemeh Heydari
NEW SUBSTANCES, MATERIALS AND COATINGS
  • 9 Downloads

Abstract

Metal matrix composites producer of a new generation of metal materials in which ceramic reinforcement has been added to the metal field, which has enhanced various properties such as special strength, wear resistance, corrosion resistance and elastic modulus. Aluminum composites reinforced with ceramic particles due to excellent mechanical, physical and tribological properties are among composites with extensive application. Among these, Al–SiC composites have been considered important in certain industries such as aerospace and automotive for their desirable properties such as strength, wear resistance, toughness, and suitable hardness. In this study, the effect of casting methods on the wearing properties of Al–SiC composites has been investigated. Also, the effect of applied shear force on the hardness and porosity of these composites has been thoroughly investigated. According to the results of the wear test, by increasing the applied current rate, wear resistance in the samples improved, the reason of which is the direct dependence of the wear strength of the samples on hardness, and the porosity in the composites.

Keywords:

wear hardness nano porosity A356 compocast SiC 

REFERENCES

  1. 1.
    Yang, X., Wang, F., and Fan, Z., J. Alloys Compd., 2017, vol. 706, pp. 430–437.CrossRefGoogle Scholar
  2. 2.
    Vo, N.Q., et al., JOM, 2016, vol. 68, no. 7, pp. 1915–1924.CrossRefGoogle Scholar
  3. 3.
    Viswanatha, B., et al., Eur. J. Eng. Res. Sci., 2016, vol. 1, no. 4, pp. 1–8.Google Scholar
  4. 4.
    Zhao, Z.Y., et al., in Proceedings of the 5th International Conference on Electrical Engineering and Automatic Control, Berlin, Heidelberg: Springer, 2012.Google Scholar
  5. 5.
    Srivastava, M.C. and Lohne, O., Int. J. Metalcast., 2016, vol. 10, no. 4, pp. 556–565.CrossRefGoogle Scholar
  6. 6.
    Kumar, S.D., et al., Tribol. Trans., 2017, vol. 60, no. 1, pp. 39–46.CrossRefGoogle Scholar
  7. 7.
    Kumar, S.M., Pramod, R., and Govindaraju, H.K., Mater. Today: Proc., 2017, vol. 4, no. 2, pp. 509–518.Google Scholar
  8. 8.
    Ramnath, B.V., et al., Mater. Des., 2014, vol. 58, pp. 332–338.CrossRefGoogle Scholar
  9. 9.
    Mueller, M., et al., Acta Mater., 2016, vol. 105, pp. 165–175.CrossRefGoogle Scholar
  10. 10.
    Ficici, F. and Koksal, S., J. Compos. Mater., 2016, vol. 50, no. 12, pp. 1685–1696.CrossRefGoogle Scholar
  11. 11.
    Nie, J., et al., Materials, 2017, vol. 10, no. 2, p. 109.CrossRefGoogle Scholar
  12. 12.
    Jiang, J., et al., Mater. Des., 2016, vol. 96, pp. 36–43.CrossRefGoogle Scholar
  13. 13.
    Chen, Q., et al., J. Alloys Compd., 2016, vol. 656, pp. 67–76.CrossRefGoogle Scholar
  14. 14.
    Mazahery, A. and Shabani, M., Strength Mater., 2012, vol. 44, no. 6, pp. 686–692.CrossRefGoogle Scholar
  15. 15.
    Liu, H., He, X., and Guo, P., AIP Conf. Proc., 2017.Google Scholar
  16. 16.
    Murthy, N., et al., IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 149, p. 012106.Google Scholar
  17. 17.
    Nautiyal, P., et al., Acta Mater., 2017, vol. 126, pp. 124–131.CrossRefGoogle Scholar
  18. 18.
    Wang, F., et al., Acta Mater., 2016, vol. 116, pp. 354–363.CrossRefGoogle Scholar
  19. 19.
    Jayashree, P., et al., Int. J. Curr. Eng. Technol., 2013, vol. 3, no. 3, p. 1061.Google Scholar
  20. 20.
    Rahimipour, M.R., et al., Neural Comput. Appl., 2014, vol. 24, nos. 7–8, pp. 1531–1538.CrossRefGoogle Scholar
  21. 21.
    Mazahery, A., Shabani, M.O., and Elrefaei, A., Int. J. Damage Mech., 2014, vol. 23, no. 7, pp. 899–916.CrossRefGoogle Scholar
  22. 22.
    Shabani, M.O. and Mazahery, A., Eng. Comput., 2014, vol. 30, no. 4, pp. 559–568.CrossRefGoogle Scholar
  23. 23.
    Mazahery, A. and Shabani, M.O., Kovove Mater., 2013, vol. 51, pp. 333–341.Google Scholar
  24. 24.
    Mazahery, A., et al., J. Compos. Mater., 2012, vol. 46, no. 21, pp. 2647–2658.CrossRefGoogle Scholar
  25. 25.
    Shabani, M.O. and Mazahery, A., Defect Diffus. Forum, 2012.Google Scholar
  26. 26.
    Jiang, J., Chen, G., and Wang, Y., J. Mater. Sci. Technol., 2016, vol. 32, no. 11, pp. 1197–1203.CrossRefGoogle Scholar
  27. 27.
    Jiang, L., et al., Acta Mater., 2016, vol. 103, pp. 128–140.CrossRefGoogle Scholar
  28. 28.
    Sita Rama Raju, K., et al., J. Compos. Mater., 2016, vol. 50, no. 26, pp. 3627–3641.CrossRefGoogle Scholar
  29. 29.
    Sree Manu, K.M., et al., Metall. Mater. Trans. B, 2016, vol. 47, no. 5, pp. 2799–2819.CrossRefGoogle Scholar
  30. 30.
    Wang, K., et al., Metall. Mater. Trans. A, 2016, vol. 47, no. 10, pp. 4788–4794.CrossRefGoogle Scholar
  31. 31.
    Yang, J. and Ilegbusi, O.J., J. Mater. Eng. Perform., 1998, vol. 7, no. 5, pp. 637–642.CrossRefGoogle Scholar
  32. 32.
    Yang, X., et al., Composites, Part A, 2016, vol. 90, pp. 349–358.CrossRefGoogle Scholar
  33. 33.
    Shabani, M.O., et al., Mater. Tehnol., 2014, vol. 48, no. 4, pp. 459–466.Google Scholar
  34. 34.
    Mazahery, A. and Shabani, M., Mater. Technol., 2013, vol. 28, no. 3, pp. 117–121.CrossRefGoogle Scholar
  35. 35.
    Mazahery, A. and Shabani, M.O., Int. J. Mater. Res., 2012, vol. 103, no. 7, pp. 847–852.CrossRefGoogle Scholar
  36. 36.
    Mazahery, A. and Shabani, M., Arch. Metall. Mater., 2012, vol. 57, no. 1, pp. 93–103.CrossRefGoogle Scholar
  37. 37.
    Mazahery, A., Alizadeh, M., and Shabani, M.O., Trans. Indian Inst. Met., 2012, vol. 65, no. 4, pp. 393–398.CrossRefGoogle Scholar
  38. 38.
    Mazahery, A., Alizadeh, M., and Shabani, M., Mater. Technol., 2012, vol. 27, no. 2, pp. 180–185.CrossRefGoogle Scholar
  39. 39.
    Shabani, M.O., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 3, pp. 486–491.CrossRefGoogle Scholar
  40. 40.
    Mazahery, A. and Shabani, M.O., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 6, pp. 817–824.CrossRefGoogle Scholar
  41. 41.
    Mazahery, A. and Shabani, M.O., J. Compos. Mater., 2014, vol. 48, no. 16, pp. 1927–1937.CrossRefGoogle Scholar
  42. 42.
    Tofigh, A.A. and Shabani, M.O., Ceram. Int., 2013, vol. 389, no. 7, pp. 7483–7490.CrossRefGoogle Scholar
  43. 43.
    Shabani, M.O. and Mazahery, A., Powder Technol., 2013, vol. 249, pp. 77–81.CrossRefGoogle Scholar
  44. 44.
    Mazahery, A., et al., J. Compos. Mater., 2013, vol. 47, no. 14, pp. 1765–1772.CrossRefGoogle Scholar
  45. 45.
    Mazahery, A. and Shabani, M.O., Powder Technol., 2013, vol. 249, pp. 530–535.CrossRefGoogle Scholar
  46. 46.
    Katz-Demyanetz, A., et al., Mater. Sci. Forum, 2017.Google Scholar
  47. 47.
    Kim, H., Babu, J., and Kang, C., Metall. Mater. Trans. A, 2014, vol. 45, no. 5, pp. 2636–2645.CrossRefGoogle Scholar
  48. 48.
    Kumar, U.K.A.V., Mater. Today: Proc., 2017, vol. 4, no. 2, pp. 1140–1146.Google Scholar
  49. 49.
    Moghadam, A.D., et al., Composites, Part B, 2015, vol. 77, pp. 402–420.CrossRefGoogle Scholar
  50. 50.
    Rajaravi, C., Niranjan, K., and Lakshminarayanan, P., J. Adv. Microsc. Res., 2015, vol. 4, no. 11, pp. 260–264.CrossRefGoogle Scholar
  51. 51.
    Ramnath, B.V., et al., Rev. Adv. Mater. Sci., 2014, vol. 38, pp. 55–60.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Materials and Energy Research Center (MERC)TehranIran
  2. 2.Amirkabir University of TechnologyTehranIran

Personalised recommendations