Advertisement

Thermally Stimulated Evolution of the Surface of Ni- and Cu-Containing Plasma-Electrolytic Oxide Coatings on Titanium

  • V. S. RudnevEmail author
  • I. V. Lukiyanchuk
  • M. S. Vasilyeva
  • A. A. Zvereva
NEW SUBSTANCES, MATERIALS, AND COATINGS
  • 13 Downloads

Abstract

The effect of the temperature of annealing in air on the surface architecture and composition of oxide layers has been studied. Copper-enriched nanosized crystals of triangular shape are present on the surface at the annealing temperatures of 500–700°С. Rectangular nano- and microcrystals of a possible composition of NiWO4 are formed on the surface after annealing at 750–850°С. Nanowhisker brushes, similar in composition to nickel titanates, cover the surface after annealing at 900–950°С. Transformation of the surface architecture and composition on the micro- and nanolevels correlates to the coatings’ activity in the catalysis of the reaction of oxidation of CO to CO2.

Keywords:

plasma electrolytic oxidation titanium coatings oxidation annealing surface architecture nano- and microformations 

Notes

FUNDING

The present work was partially supported by grant from the Russian Foundation for Basic Research no. 18-03-00418.

REFERENCES

  1. 1.
    Yu, X.W., Chen, L., He, Y.Y., and Yan, Z.C., Surf. Coat. Technol., 2015, vol. 269, pp. 30–35.CrossRefGoogle Scholar
  2. 2.
    Papurello, R.L., Cabello, A.P., Ulla, M.A., Neyertz, C.A., and Zamaro, J.M., Surf. Coat. Technol., 2017, vol. 328, pp. 231–239.CrossRefGoogle Scholar
  3. 3.
    Domínguez, M.I., Pérez, A., Centeno, M.A., and Odriozola, J.A., Appl. Catal., A, 2014, vol. 478, pp. 45–57.Google Scholar
  4. 4.
    Rafieerad, A.R., Ashra, M.R., Mahmoodian, R., and Bushroa, A.R., Mater. Sci. Eng., C, 2015, vol. 57, pp. 397–413.CrossRefGoogle Scholar
  5. 5.
    Shibli, S.M.A. and Mathai, S., J. Mater. Sci.: Mater. Med., 2008, vol. 19, no. 8, pp. 2971–2981.Google Scholar
  6. 6.
    Zhao, R.R., Xu, M.Z., Wang, J.A., and Chen, G.N., Electrochim. Acta, 2010, vol. 55, no. 20, pp. 5647–5651.CrossRefGoogle Scholar
  7. 7.
    Marinina, G.I., Vasilyeva, M.S., Lapina, A.S., Ustinov, A.Y., and Rudnev, V.S., J. Electroanal. Chem., 2013, vol. 689, pp. 262–268.CrossRefGoogle Scholar
  8. 8.
    Jiang, X.C., Herricks, T., and Xia, Y.N., Nano Lett., 2002, vol. 2, no. 12, pp. 1333–1338.CrossRefGoogle Scholar
  9. 9.
    Sun, Y., Xu, R., Yang, J.Y., He, L., Nie, J.C., Dou, R.F., Zhou, W., and Guo, L., Nanotechnology, 2010, vol. 21, no. 33, Paper 335605.CrossRefGoogle Scholar
  10. 10.
    Neyertz, C.A., Gallo, A.D., Ulla, M.A., and Zamaro, J.M., Surf. Coat. Technol., 2016, vol. 285, pp. 262–269.CrossRefGoogle Scholar
  11. 11.
    Hahn, R., Brunner, J.G., Kunze, J., Schmuki, P., and Virtanen, S., Electrochem. Commun., 2008, vol. 10, no. 2, pp. 288–292.CrossRefGoogle Scholar
  12. 12.
    Jitaru, M., Toma, A.M., Tertis, M.C., and Trifoi, A., Environ. Eng. Manage. J., 2009, vol. 8, no. 4, pp. 657–661.CrossRefGoogle Scholar
  13. 13.
    Say, W.C. and Chen, C.C., Jpn. J. Appl. Phys., Part 1, 2007, vol. 46, no. 11, pp. 7577–7580.Google Scholar
  14. 14.
    Chen, C.-C., Fang, D., and Luo, Z.P., Rev. Nanosci. Nanotechnol., 2012, vol. 1, pp. 229–256.CrossRefGoogle Scholar
  15. 15.
    Bayati, M.R., Molaei, R., Zargar, H.R., Kajbafvala, A., and Zanganeh, S., Mater. Lett., 2010, vol. 64, pp. 2498–2501.CrossRefGoogle Scholar
  16. 16.
    Jiang, X., Zhang, L., Wybornov, S., Staedler, T., Hein, D., Wiedenmann, F., Krumm, W., Rudnev, V., and Lukiyanchuk, I., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 8, pp. 4062–4066.CrossRefGoogle Scholar
  17. 17.
    Rudnev, V.S., Wybornov, S., Lukiyanchuk, I.V., Staedler, T., Jiang, X., Ustinov, A.Yu., and Vasilyeva, M.S., Appl. Surf. Sci., 2012, vol. 258, pp. 8667–8672.CrossRefGoogle Scholar
  18. 18.
    Rudnev, V.S., Tyrina, L.M., Ustinov, A.Yu., Vybornova, S., and Lukiyanchuk, I.V., Kinet. Catal., 2010, vol. 51, no. 2, pp. 266–272.CrossRefGoogle Scholar
  19. 19.
    Rudnev, V.S., Gordienko, P.S., Kurnosova, A.G., and Orlova, T.I., RF Patent 1783004, Byull. Izobret., 1992, no. 47.Google Scholar
  20. 20.
    Rudnev, V.S., Gordienko, P.S., Yarovaya, T.P., Zavidnaya, A.G., and Zheleznov, V.V., Russ. J. Appl. Chem, 1994, vol. 67, no. 8, pp. 1128–1131.Google Scholar
  21. 21.
    Nalbandyan, V.B., J. Solid State Chem., 2017, vol. 249, pp. 27–28.CrossRefGoogle Scholar
  22. 22.
    Jiang, Y.A., Liu, B.D., Yang, L.N., Yang, B., Liu, X.Y., Liu, L.S., Weimer, C., and Jiang, X., Sci. Rep., 2015, vol. 5, p. 14330.CrossRefGoogle Scholar
  23. 23.
    Jiang, Y.N., Liu, B., Zhai, Z., Liu, X., Yang, B., Liu,  L., and Jiang, X., Appl. Surf. Sci., 2015, vol. 356, pp. 273–281.CrossRefGoogle Scholar
  24. 24.
    Jiang, Y.N., Liu, B.D., Yang, W.J., Yang, B., Liu, X.Y., Zhang, X.L., Mohsin, M.A., and Jiang, X., CrystEngComm, 2016, vol. 18, pp. 1832–1841.CrossRefGoogle Scholar
  25. 25.
    Lukiyanchuk, I.V., Rudnev, V.S., Serov, M.M., Krit, B.L., Lukiyanchuk, G.D., and Nedozorov, P.M., Appl. Surf. Sci., 2018, vol. 436, pp. 1–10.CrossRefGoogle Scholar
  26. 26.
    Preparative Inorganic Reactions, Jolly, W.L., Ed., New York, London, Sydney: Interscience Publishers, 1964.Google Scholar
  27. 27.
    Rudnev, V.S., Lukiyanchuk, I.V., Adigamova, M.V., Morozova, V.P., and Tkachenko, I.A., Surf. Coat. Technol., 2015, vol. 269, pp. 23–29.CrossRefGoogle Scholar
  28. 28.
    Vasilyeva, M.S., Rudnev, V.S., Wiedenmann, F., Wybomov, S., Yarovaya, T.P., and Jiang, X., Appl. Surf. Sci., 2011, vol. 258, no. 2, pp. 719–726.CrossRefGoogle Scholar
  29. 29.
    Rudnev, V.S., Malyshev, I.V., Lukiyanchuk, I.V., and Kuryavyi, V.G., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 4, pp. 455–461.CrossRefGoogle Scholar
  30. 30.
    Rudnev, V.S., Adigamova, M.V., Lukiyanchuk, I.V., Ustinov, A.Yu., Tkachenko, I.A., Kharitonskii, P.V., Frolov, A.M., and Morozova, V.P., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 5, pp. 543–552.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. S. Rudnev
    • 1
    • 2
    Email author
  • I. V. Lukiyanchuk
    • 1
  • M. S. Vasilyeva
    • 1
    • 2
  • A. A. Zvereva
    • 1
  1. 1.Institute of Chemistry, Far East Branch, Russian Academy of SciencesVladivostokRussia
  2. 2.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations