Advertisement

Nickel Nanoparticle Catalyzed Growth of Multiwall CNTs on Copper thin Films Substrate

  • Kimia Nikpasand
  • Seyed Mohammad ElahiEmail author
  • Amir Hossein Sari
  • Arash Boochani
NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • 15 Downloads

Abstract

Significant applications of metallic nanocatalysts motivated us to study the role of catalyst contents by choosing Cu–Ni nanocatalyst in synthesizing carbon nanotubes (CNTs). Cu–Ni thin films were prepared by RF sputtering method with different deposition time of Ni. They inserted the prepared catalysts into a quartz tube reactor for carbon nanotubes fabrication. Scanning electron microscopy (SEM) recorded the diameter distribution of multi walled carbon nanotubes (MWCNTs) while atomic force microscopy (AFM) was applied for surface roughness estimation. Both analyses confirm the positive effect of deposition time on the catalytic properties of Cu/Ni nanocatalysts which ends to the improved quality of prepared CNTs. In addition, the structure of multi walled carbon nanotubes were investigated by Raman spectroscopy.

Keywords:

Cu–Ni nanocomposite multiwall CNTs RF-sputtering AFM SEM catalyst properties 

REFERENCES

  1. 1.
    Majidi, S., Nezafat, N.B., Rai, D.P., Achour, A., Ghaziasadi, H., Sheykhian, A., and Solaymani, S., Opt. Quantum Electron., 2018, vol. 50, no.7, p. 292.CrossRefGoogle Scholar
  2. 2.
    Ţălu, Ş., Bramowicz, M., Kulesza, S., Shafiekhani, A., Rahmati, M., Ghaderi, A., Ahmadirad, M., and Solaymani, S., Surf. Interface Anal., 2017, vol. 49, no. 3, pp.153–160.CrossRefGoogle Scholar
  3. 3.
    Mahmoodi, A., Solaymani, S., Amini, M., Nezafat, N.B., and Ghoranneviss, M., Silicon, 2018, vol. 10, no.4, p. 1427CrossRefGoogle Scholar
  4. 4.
    Dalouji, V., Elahi, S.M., Solaymani, S., Ghaderi, A., and Elahi, H., Appl. Phys. A: Mater. Sci. Process., 2016, vol. 122, no. 5, p. 541.CrossRefGoogle Scholar
  5. 5.
    Solaymani, S., Ghaderi, A., and Nezafat, N.B., J. Fusion Energy, 2012, vol. 31, no. 6, p. 591.CrossRefGoogle Scholar
  6. 6.
    Talu, S., Solaymani, S., Bramowicz, M., Naseri, N., Kulesza, S., and Ghaderi, A., RSC Adv., 2016, vol. 6, pp. 27228–27234.CrossRefGoogle Scholar
  7. 7.
    Dresselhaus, M.S., Dresselhaus, G., and Avouris, P., in Topics in Applied Physics, Berlin: Springer, 2001, vol. 80, p. 1.Google Scholar
  8. 8.
    Dekker, C., Phys. Today, 1999, vol. 52, p. 22.CrossRefGoogle Scholar
  9. 9.
    Dai, H., Carbon Nanotubes, Berlin: Springer, 2001, vol. 80, p. 29.Google Scholar
  10. 10.
    Lee, C.J., Park, J.H., and Park, J., Chem. Phys. Lett., 2000, vol. 323, p. 560.CrossRefGoogle Scholar
  11. 11.
    Saito, Y., Nakahira, T., and Uemura, S., J. Phys. Chem. B, 2002, vol. 107, p. 931.CrossRefGoogle Scholar
  12. 12.
    Thess, A., Lee, R., Nikolav, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., and Rinzler, A.G., Science, 1996, vol. 273, p. 483.CrossRefGoogle Scholar
  13. 13.
    Dalouji, V., Elahi, S.M., Solaymani, S., Ghaderi, A., and Elahi, H., Appl. Phys. A: Mater. Sci. Process., 2016, vol. 122, no. 5, p. 1.CrossRefGoogle Scholar
  14. 14.
    Wei, B.Q., Vajtai, R., and Ajayan, P.M., Appl. Phys. Lett., 2001, vol. 79, p. 1172.CrossRefGoogle Scholar
  15. 15.
    Gao, B., Chem. Phys. Lett., 2000, vol. 327, p. 69.CrossRefGoogle Scholar
  16. 16.
    Moreno-Mañas, M. and Pleixats, R., Acc. Chem. Res., 2003, vol. 36, p. 638.CrossRefGoogle Scholar
  17. 17.
    Roucoux, A., Schulz, J., and Patin, H., Chem. Rev., 2002, vol. 102, p. 3757.CrossRefGoogle Scholar
  18. 18.
    Atthipalli, G., Epur, R., Kumta, P.N., Allen, B.L., Tang, Y., Star, A., and Gray, J.L., Thin Solid Films, 2011, vol. 519, p. 5371.CrossRefGoogle Scholar
  19. 19.
    Stach, S., Garczyk, Ż., Ţălu, Ş., Solaymani, S., Ghaderi, A., Moradian, R., Nezafat, N.B., Elahi, S.M., and Gholamali, H., J. Phys. Chem. C, 2015, vol. 119, no. 32, p. 17887.CrossRefGoogle Scholar
  20. 20.
    Bian, J., Xiao, M., Wang, S.J., Lu, Y.X., and Meng, Y.Z., Catal. Commun., 2009, vol. 10, p. 1529.CrossRefGoogle Scholar
  21. 21.
    Vizcaíno, A.J., Carrero, A., and Calles, J.A., Int. J. Hydrogen Energy, 2007, vol. 32, p. 1450.CrossRefGoogle Scholar
  22. 22.
    Asedegbega-Nieto, E., Guerrero-Ruíz, A., and Rodríguez-Ramos, I., Thermochim. Acta, 2005, vol. 434, p. 113.CrossRefGoogle Scholar
  23. 23.
    Ţălu, Ş., Bramowicz, M., Kulesza, S., Shafiekhani, A., Rahmati, M., Ghaderi, A., Ahmadirad, M., and Solaymani, S., Surf. Interface Anal., 2017, vol. 49, p. 153.CrossRefGoogle Scholar
  24. 24.
    Mahmoodi, A., Solaymani, S., Amini, M., Nezafat, N.B., and Ghoranneviss, M., Silicon, 2018, vol. 10, p. 1427.CrossRefGoogle Scholar
  25. 25.
    Zhang, Y., Tang, H., Ji, X., Li, Ch., Chen, L., Zhang, D., Yang, X., and Zhang, H., RSC Adv., 2013, vol. 3, p. 26086.CrossRefGoogle Scholar
  26. 26.
    Gopalan, E.V., Malini, K.A., Santhoshkumar, G., Narayanan, T.N., Joy, P.A., Al-Omari, I.A., Kumar, D.S., Yoshida, Y., and Anantharaman, M.R., Nanoscale Res. Lett., 2010, vol. 5, p. 889.CrossRefGoogle Scholar
  27. 27.
    King, J., Li, J., Du, X., Shi, Ch., Zhao, N., and Nash, Ph., Mater. Sci. Eng., A, 2008, vol. 475, p. 136.CrossRefGoogle Scholar
  28. 28.
    Nessim, G.D., Nanoscale, 2010, vol. 2, p. 1306.CrossRefGoogle Scholar
  29. 29.
    Pourmand, S., Abdouss, M., and Rashidi, A.M., Int. J. Environ. Res., 2015, vol. 9, p. 1269.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Kimia Nikpasand
    • 1
  • Seyed Mohammad Elahi
    • 1
    Email author
  • Amir Hossein Sari
    • 1
  • Arash Boochani
    • 2
  1. 1.Department of Physics, Faculty of Sciences, Science and Research Branch, Islamic Azad UniversityTehranIran
  2. 2.Department of Physics, Kermanshah Branch, Islamic Azad UniversityKermanshahIran

Personalised recommendations