Advertisement

Potential of Ge-adopted Boron Nitride Nanotube as Catalyst for Sulfur Dioxide Oxidation

  • Noor H. Jabarullah
  • Razieh RazaviEmail author
  • Mohadeseh Yazdani Hamid
  • Qahtan. A. Yousif
  • Meysam NajafiEmail author
NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • 1 Downloads

Abstract

In recent years, the discovery of efficient catalyst with low price to sulfur dioxide (SO2) oxidation in normal temperature is a major concern in the industry. In present study, in first step the boron nitride nanotube (BNNT) with Ge were adopted and the surface of Ge-adopted BNNT via O2 molecule were activated. In second step the SO2 oxidation on activated Ge-BNNT surface via Langmuir Hinshelwood (LH) and Eley Rideal (ER) mechanisms was investigated. Results show that O2 activated Ge-BNNT surface can oxide the SO2 molecule via Ge-BNNT-O-O* + SO2 → Ge-BNNT-O-O*-SO2 → Ge-BNNT-O* + SO3 and Ge-BNNT-O* + SO2 → Ge-BNNT + SO3 reactions. Results show that SO2 oxidation on activated Ge-BNNT surface via the LH mechanism has lower energy barrier than ER mechanism. Finally, calculated parameters reveal that activated Ge-BNNT is acceptable catalyst with low price and high performance for SO2 oxidation in normal temperature.

Keywords:

catalyst nanostructure metal adoption oxidation reaction adsorption energy 

Notes

ACKNOWLEDGMENTS

The authors would like to thank all chemistry teachers for scientific supports.

REFERENCES

  1. 1.
    Fu, Q., Gu, X.K., Chen, L., Wang, Z., and Zhang, H., Science, 2010, vol. 328, pp. 1141–1144.CrossRefGoogle Scholar
  2. 2.
    Royer, S. and Duprez, D., ChemCatChem, 2011, vol. 3, pp. 24–65.CrossRefGoogle Scholar
  3. 3.
    Peterson, E.J., Nat. Commun., 2014, vol. 5, p. 4885.CrossRefGoogle Scholar
  4. 4.
    Agaev, T.N., Gadzhieva, N.N., Melikova, S.Z., et al., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, pp. 813–816.Google Scholar
  5. 5.
    Koshuro, V.A., Fomin, A.A., Rodionov, I.V., and Fomina, M.A., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, pp. 840–844.Google Scholar
  6. 6.
    Lopez, N. and Janssens, T., J. Catal., 2004, vol. 223, pp. 232–235.CrossRefGoogle Scholar
  7. 7.
    Freund, H.J., Meijer, G., and Scheffler, M., Angew. Chem., 2011, vol. 50, pp. 10064–10094.CrossRefGoogle Scholar
  8. 8.
    Johnson, R.S., DeLaRiva, A., and Ashbacher, V., Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 7768–7776.CrossRefGoogle Scholar
  9. 9.
    Su, H.Y., Yang, M.M., Bao, X.H., and Li, W.X., J. Phys. Chem. C, 2008, vol. 112, pp. 17303–17310.CrossRefGoogle Scholar
  10. 10.
    Chen, M.S., Cai, Y., and Yan, Z., Surf. Sci., 2007, vol. 601, pp. 5326–5331.CrossRefGoogle Scholar
  11. 11.
    Piccinin, S. and Stamatakis, M., ACS Catal., 2014, vol. 4, pp. 2143–2152.CrossRefGoogle Scholar
  12. 12.
    Liu, W., Zhu, Y., Lian, J., and Jiang, Q., J. Phys. Chem. C, 2007, vol. 111, pp. 1005–1009.CrossRefGoogle Scholar
  13. 13.
    Liu, D.J., J. Phys. Chem. C, 2007, vol. 111, pp. 14698–14706.CrossRefGoogle Scholar
  14. 14.
    Wallace, W.T. and Whetten, R.L., J. Am. Chem. Soc., 2002, vol. 124, pp. 7499–7505.CrossRefGoogle Scholar
  15. 15.
    Chang, C., Cheng, C., and Wei, C., J. Chem. Phys., 2008, vol. 128, p. 124710.CrossRefGoogle Scholar
  16. 16.
    Du, J., Wu, G., and Wang, J., J. Phys. Chem. A, 2010, vol. 114, pp. 10508–10514.CrossRefGoogle Scholar
  17. 17.
    Molina, L. and Hammer, B., Phys. Rev. Lett., 2003, vol. 90, p. 206102.CrossRefGoogle Scholar
  18. 18.
    Gong, X.Q., Liu, Z.P., Raval, R., and Hu, P., J. Am. Chem. Soc., 2004, vol. 126, pp. 8–9.CrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Tan, Y.-W., Stormer, H.L., and Kim, P., Nature, 2005, vol. 438, pp. 201–204.CrossRefGoogle Scholar
  20. 20.
    Kan, E., Li, Z., and Yang, J., Nano, 2008, vol. 3, pp. 433–442.CrossRefGoogle Scholar
  21. 21.
    Razavi, R., Abrishamifar, S.M., Kahkha, M.R.R., Vojood, A., and Najafi, M., Bull. Mater. Sci., 2018, vol. 41, p. 152.Google Scholar
  22. 22.
    Lee, C., Wei, X., Kysar, J.W., and Hone, J., Science, 2008, vol. 321, pp. 385–388.CrossRefGoogle Scholar
  23. 23.
    Novoselov, K.S., Geim, A.K., and Morozov, S., Science, 2004, vol. 306, pp. 666–669.CrossRefGoogle Scholar
  24. 24.
    Geim, A.K. and Novoselov, K.S., Nat. Mater., 2007, vol. 6, pp. 183–191.CrossRefGoogle Scholar
  25. 25.
    Morozov, S., Novoselov, K., and Katsnelson, M., Phys. Rev. Lett., 2008, vol. 100, p. 016602.CrossRefGoogle Scholar
  26. 26.
    Geim, A.K., Science, 2009, vol. 324, pp. 1530–1534.CrossRefGoogle Scholar
  27. 27.
    Razavi, R., Eghtedaei, G.E., Rajabzadeh, H., and Najafi, M., Inorg. Chem. Commun., 2018, vol. 94, pp. 85–91.Google Scholar
  28. 28.
    Hornes, A. and Hungria, A.B., J. Am. Chem. Soc., 2010, vol. 132, p. 34.CrossRefGoogle Scholar
  29. 29.
    Hu, X., Wu, Y., and Zhang, Z., J. Mater. Chem., 2012, vol. 22, p. 15198.CrossRefGoogle Scholar
  30. 30.
    Tang, Y., Dai, X., Yang, Z., Liu, Z., Pan, L., Ma, D., and Lu, Z., Carbon, 2014, vol. 71, p. 139.CrossRefGoogle Scholar
  31. 31.
    Li, Y., Zhou, Z., Yu, G., Chen, W., and Chen, Z., J. Phys. Chem. C, 2010, vol. 114, p. 6250.CrossRefGoogle Scholar
  32. 32.
    Song, E.H., Wen, Z., and Jiang, Q., J. Phys. Chem. C, 2011, vol. 115, p. 3678.CrossRefGoogle Scholar
  33. 33.
    Tang, Y., Yang, Z., and Dai, X., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 16566.CrossRefGoogle Scholar
  34. 34.
    Tang, Y., Liu, Z., Dai, X., Yang, Z., Chen, W., and Lu, Z., Appl. Surf. Sci., 2014, vol. 308, p. 402.CrossRefGoogle Scholar
  35. 35.
    Lin, S., Ye, X., and Huang, J., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 888.CrossRefGoogle Scholar
  36. 36.
    Tawfik, S.A., Cui, X.Y., Carter, D.J., and Stamp, C., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 6925.CrossRefGoogle Scholar
  37. 37.
    Davies, A.G., Organotin Chemistry, Weinheim: Wiley-VCH, 2004.CrossRefGoogle Scholar
  38. 38.
    Song, H., Zhang, L., He, C., Qu, Y., Tian, Y., and Lv, Y., J. Mater. Chem., 2011, vol. 21, p. 5972.CrossRefGoogle Scholar
  39. 39.
    Zhou, Q., Wang, C., Fu, Z., Tang, Y., and Zhang, H., Comput. Mater. Sci., 2014, vol. 83, pp. 398–402.CrossRefGoogle Scholar
  40. 40.
    Krasheninnikov, A.V., Lehtinen, P.O., and Foster, A.S., Phys. Rev. Lett., 2009, vol. 102, p. 126807.CrossRefGoogle Scholar
  41. 41.
    Li, F., Zhao, J., and Chen, Z., J. Phys. Chem. C, 2012, vol. 116, pp. 2507–2514.CrossRefGoogle Scholar
  42. 42.
    Wang, X., Li, X., Zhang, L., Yoon, Y., and Weber, P.K., Science, 2009, vol. 324, pp. 768–771.CrossRefGoogle Scholar
  43. 43.
    Reddy, A.L.M., Srivastava, A., Gowda, S.R., and Gullapalli, H., ACS Nano, 2010, vol. 4, pp. 6337–6342.CrossRefGoogle Scholar
  44. 44.
    Zhao, Y. and Truhlar, D.G., Theor. Chem. Acc., 2008, vol. 120, pp. 215–241.CrossRefGoogle Scholar
  45. 45.
    Andzelm, J. and Kolmel, C., J. Chem. Phys. 1995, vol. 103, pp. 9312–9320.CrossRefGoogle Scholar
  46. 46.
    Gan, L.H. and Zhao, J.Q., Phys. E (Amsterdam, Neth.), 2009, vol. 41, pp. 1249–1252.Google Scholar
  47. 47.
    Boys, S.F. and Bernardi, F., Mol. Phys., 1970, vol. 19, pp. 553–566.CrossRefGoogle Scholar
  48. 48.
    Ma, L., Zhang, J.M., Xu, K.W., and Ji, V., Appl. Surf. Sci., 2015, vol. 343, pp. 121–127.CrossRefGoogle Scholar
  49. 49.
    Zhang, T., Xue, Q., Shan, M., and Jiao, Z., J. Phys. Chem. C, 2012, vol. 116, pp. 19918–19924.CrossRefGoogle Scholar
  50. 50.
    Wu, M., Cao, C., and Jiang, J., New J. Phys., 2010, vol. 12, p. 063020.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Universiti Kuala Lumpur Malaysian Institute of Aviation Technology Jalan Jenderam HuluSepangMalaysia
  2. 2.Department of Chemistry, Faculty of Science, University of JiroftJiroftIran
  3. 3.Bachelor of Marine Engineering, Mechanic Faculty, Sharif UniversityTehranIran
  4. 4.University of Al-Qadisiyah, College of Education, Department of ChemistryAl DiwaniyahIraq
  5. 5.Medical Biology Research Center, Kermanshah University of Medical SciencesKermanshahIran

Personalised recommendations