Structural Phase State and Thermal Cyclic Stability of the Thermal Barrier Zr–Si–O Coatings Deposited on a Copper Substrate by the Microplasma Method

  • T. I. DorofeevaEmail author
  • T. A. Gubaidullina
  • B. P. Gritsenko
  • V. P. Sergeev


In this work, preparation of thermal barrier coatings based on zirconium oxide is shown. The phased treatment of the copper substrate is proposed in order to obtain a layered thermal barrier oxide coating on it. The sample surface is nanostructured, titanium is deposited layer-by-layer (by the vacuum-arc method) and then zirconium (by the magnetron method), and then zirconium is converted into zirconium dioxide by the microplasma method. The formed oxide-ceramic coatings contain elements from a solution, according to the results of elemental analysis, and zirconium dioxide in tetragonal and monoclinic modifications, according to the results of X-ray diffraction. A study of thermal cyclic stability was carried out. It is revealed that an increase in the time of microplasma treatment to a certain value has a positive effect on the thermal cyclic properties of the obtained layer material and it is able to sustain more than 90 cycles without serious damage to the surface layer.


microplasma oxidation zirconium dioxide oxide-ceramic coating thermal barrier coating 



The work was performed in the framework of the Program of Basic Scientific Research of the Russian Academy of Sciences for 2013–2020, direction III.23.


  1. 1.
    Trety’akov, Yu.D., Keramika - material budushchego (Ceramics – Future Material), Moscow: Znanie, 1987, p. 48.Google Scholar
  2. 2.
    Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika (Technical Ceramics), Moscow: Nauka, 1993.Google Scholar
  3. 3.
    Kanygina, O.N. and Pak, E.M., Vestn. Kirg. Nats. Univ., Ser. Estestv. Tekh. Nauki, 1996, no. 1 (2), pp. 53–56.Google Scholar
  4. 4.
    Aviatsionnye materialy i tekhnologii. 80 let (Aviation Materials and Technologies. 80 Years), Kablov, E.N., Ed., Moscow: All-Russian Scientific Research Institute of Aviation Materials, 2012, p. 476.Google Scholar
  5. 5.
    Salakhutdinov, G.M., Razvitie metodov teplozashchity zhidkostnykh raketnykh dvigatelei (Development of Methods of Thermal Protection of Liquid Rocket Engines), Moscow: Nauka, 1984, p. 144.Google Scholar
  6. 6.
    Lukin, E.S., Popova, N.A., and Zdvizhkova, N.I., Steklo Keram., 1993, nos. 9–10, pp. 25–29.Google Scholar
  7. 7.
    Baranov, R.V., Proc. Youth Scientific Conference 22nd Gagarin Readings, Moscow, 1996, part 3, pp. 48.Google Scholar
  8. 8.
    Ceramics and Society, Brook, R.J., Ed., Faenza: Techna, 1995, p. 158.Google Scholar
  9. 9.
    Panin, V.E., Koroteev, A.S., Sergeev, V.P., and Rizakhanov, R.N., Nauka Pervykh Ruk, 2011, no. 4, pp. 96–103.Google Scholar
  10. 10.
    Panin, V.E., Sergeev, V.P., and Panin, A.V., Nanostrukturirovanie poverkhnostnykh sloev konstruktsionnykh materialov i nanesenie nanostrukturnykh pokrytii (Nano-Structuring of Surface Layers of Materials and Plating of Nano-Structural Coatings), Tomsk: Tomsk Polytechnic Univ., 2010, p. 254.Google Scholar
  11. 11.
    Mamaev, A.I., Mamaeva, V.A., Borikov, V.N., and Dorofeeva, T.I., Formirovanie nanostrukturnykh nemetallicheskikh neorganicheskikh pokrytii putem lokalizatsii vysokoenergeticheskikh potokov na granitse razdela faz. Uchebnoe posobie (Formation of Nano-Structural Nonmetallic Inorganic Coverings by Localization of High-Energy Streams on Phase’s Border. Student’s Book), Tomsk: Tomsk Polytechnic Univ., 2010, p. 360.Google Scholar
  12. 12.
    Appelfeld, A.V. and Suminov, I.V., Microarc Oxidation. The Course of Lectures for Foreign Students, Moscow: MATI–Russian State Technological University Named after K.E. Tsiolkovsky, 2006, p. 82.Google Scholar
  13. 13.
    Dorofeeva, T.I. and Mamaeva, V.A., Fiz. Khim. Obrab. Mater., 2010, no. 2, pp. 18–25.Google Scholar
  14. 14.
    Fedorischeva, M.V., Kalashnikov, M.P., Sergeev, V.P., and Neufeld, V.V., Bull. Rus. Acad. Sci.: Phys., 2014, vol. 78, no. 8, pp. 710–712.Google Scholar
  15. 15.
    Sergeev, V.P., Yanovskii, V.P., Paraev, Yu.N., Sergeev, O.V., Kozlov, D.V., and Zhuravlev, S.A., Fiz. Mezomekh., 2004, vol. 7, no. S1-2, pp. 333–336.Google Scholar
  16. 16.
    Emel'yanova, E.Yu., Dorofeeva, T.I., Mamaev, A.I., Mamaeva, V.A., and Budnitskaya, Yu.Yu., Izv. Vyssh. Uchebn. Zaved., Fiz., 2011, vol. 54, no. 10/2, pp. 132–138.Google Scholar
  17. 17.
    Mamaev, A.I., Borikov, V.N., Mamaeva, V.A., and Dorofeeva, T.I., Prot. Met., 2005, vol. 41, no. 3, pp. 254–258.CrossRefGoogle Scholar
  18. 18.
    Dorofeeva, T.I., Mamaev, A.I., and Mamaeva, V.A., Perspekt. Mater., 2007, no. 5, pp. 48–52.Google Scholar
  19. 19.
    Balkevich, V.L., Tekhnicheskaya keramika (Technical Ceramics), Moscow: Stroiizdat, 1984, p. 189.Google Scholar
  20. 20.
    Kalinovich, D.F., Kuznetsova, L.I., and Denisenko, E.T., Poroshk. Metall., 1987, no. 11, pp. 98–102.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. I. Dorofeeva
    • 1
    Email author
  • T. A. Gubaidullina
    • 1
  • B. P. Gritsenko
    • 1
    • 2
  • V. P. Sergeev
    • 1
    • 2
  1. 1.Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations