Advertisement

Calculation of the Surface Energy of Metals: Agreement of the Thermodynamic Vacancy Model with the First-Principles Theory

  • Yu. Ya. AndreevEmail author
  • A. V. Terent’ev
PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • 12 Downloads

Abstract

The thermodynamic vacancy model (TVM) of surface energy (SE) leads to the formula of the linear dependence of the minimum SE value of the low-index fcc (111) and bcc (110) faces on half of the vacancy formation energy or the 1/6 part of the cohesive energy of metals. Comparison of the numerical values of SE calculated by the TVM method with those calculated by the DFT method for the same faces shows negative deviations of the latter (from 2 to 17%). Using the values of these deviations, the surface energy relaxation of metals was calculated with a maximum value for Au and Pt and a minimum value for Ag and Pd.

Keywords:

metals surface energy cohesion energy vacancy formation energy surface energy relaxation 

Notes

REFERENCES

  1. 1.
    Blakely, J.M., Introduction to the Properties of Crystal Surfaces, Oxford: Pergamon Press, 1973, p. 274.Google Scholar
  2. 2.
    Michaelides, A. and Scheffler, M., in Surface and Interface Science, Wandelt, K., Ed., John Wiley and Sons, 2012, vol. 1, p. 54.Google Scholar
  3. 3.
    Wojciechqwski, K.F., Surf. Sci., 1999, vol. 437, pp. 285–288.CrossRefGoogle Scholar
  4. 4.
    Vitos, L., Ruban, A.V., Skriver, H.L., and Kollar, J., Surf. Sci., 1998, vol. 441, p. 186.CrossRefGoogle Scholar
  5. 5.
    Medasani, B., Haranczyk, M., Canning, A., and Asta, M., Comput. Mater. Sci., 2015, vol. 101, p. 96.CrossRefGoogle Scholar
  6. 6.
    Gibbs, J.W., The Collected Works, vol. 1: Thermodynamics, New York: Longmans and Green, 1928, p. 434.Google Scholar
  7. 7.
    Andreev, Yu.Ya., Russ. J. Phys. Chem. A, 1998, vol. 72, no. 3, pp. 447–451.Google Scholar
  8. 8.
    Andreev, Yu.Ya., Electrochim. Acta, 1998, vol. 43, p. 2627.CrossRefGoogle Scholar
  9. 9.
    Andreev, Yu.Ya., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 1, pp. 42–51.CrossRefGoogle Scholar
  10. 10.
    Andreev, Yu.Ya. and Kiselev, D.A., Philos. Mag., 2013, vol. 93, pp. 2401–2412.CrossRefGoogle Scholar
  11. 11.
    Andreev, Yu.Ya., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 6, p. 991.Google Scholar
  12. 12.
    Overbury, S.H., Bertrand, P.A., and Somorjai, G.A., Chem. Rev., 1975, vol. 75, no. 5, p. 547.CrossRefGoogle Scholar
  13. 13.
    Korzhavyi, P.A., Abrikosov, I.A., Johansson, B., Ruban, A.V., and Skriver, H.L., Phys. Rev. B, 1999, vol. 59, p. 11693.CrossRefGoogle Scholar
  14. 14.
    Soderlind, P., Yang, L.H., Moriarty, J.A., and Wills, J.M., Phys. Rev. B, 2000, vol. 61, p. 2579.CrossRefGoogle Scholar
  15. 15.
    Gottstein, G., Physical Foundations of Materials Science, Berlin, Heidelberg: Springer, 2004.CrossRefGoogle Scholar
  16. 16.
    Dasileva, J.L.F., Stampfl, C., and Scheffler, M., Surf. Sci., 2006, vol. 600, p. 703.CrossRefGoogle Scholar
  17. 17.
    Methfessel, M., Hennig, D., and Scheffler, M., Phys. Rev. B, 1992, vol. 46, p. 4816.CrossRefGoogle Scholar
  18. 18.
    Kraftmakher, Ya., Phys. Rep., 1998, vol. 299, pp. 79–188.CrossRefGoogle Scholar
  19. 19.
    Damask, A.C. and Dienes, G.J., Point Defects in Metals, New York: Gordon and Breach, 1963, p. 314.Google Scholar
  20. 20.
    Gorecki, T., Z. Metallkd., 1974, vol. 65, pp. 426–431.Google Scholar
  21. 21.
    Stolze, P., J. Phys.: Condens. Matter, 1994, vol. 6, p. 9495.Google Scholar
  22. 22.
    Doyama, M. and Koehler, J.S., Acta Metall., 1976, vol. 24, p. 871.CrossRefGoogle Scholar
  23. 23.
    Taylor, H.S., Proc. R. Soc. A, 1925, vol. 108, p. 105.CrossRefGoogle Scholar
  24. 24.
    Figuera, J., Prieto, J.E., Ocal, C., and Miranda, R., Solid State Commun., 1994, vol. 89, p. 815.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations