Inhibition of Carbon Steel Corrosion in Neutral Calcareous Synthetic Water by Eruca sativa Extract

  • Wahiba Ebdelly
  • Samia Ben Hassen
  • X Ramón Nóvoa
  • Yasser Ben AmorEmail author


Here, by various electrochemical and analytical techniques, we have examined whether Eruca sativa aqueous extract can inhibit the corrosion of carbon steel in calcareous synthetic water. We detected differences in the morphology and phases of the films formed on the metallic surface under corrosion conditions. The electrochemical results suggest that, in the presence of E. sativa extract, the observed decrease in the corrosion current is associated with an increase in polarization resistance. EIS results reveal the presence of two time constants. The first one, at high frequency range (HF), is associated to the faradic process. The second one, at low frequency (LF), is related to the redox reaction occurring in the passive film. The highest inhibition efficiency, related to the large fraction of phenolic compounds present in the extract, can reach up to 95% with a dose of only 30 ppm.


corrosion plant extract calcareous medium carbon steel magnetite aragonite 


  1. 1.
    Al-Otaibi, M.S., Al-Mayouf, A.M., Khan, M., Mousa, A.A., Al-Mazroa, S.A., and Alkhathlan, H.Z., Arabian J. Chem., 2014, vol. 7, p. 340.CrossRefGoogle Scholar
  2. 2.
    Obot, I.B., Obi-Egbedi, N.O., and Umoren, S.A., Corros. Sci., 2009, vol. 51, p. 1868.CrossRefGoogle Scholar
  3. 3.
    Yıldırım, A. and Cetin, M., Corros. Sci., 2008, vol. 50, p. 155.CrossRefGoogle Scholar
  4. 4.
    Gentil, V., Corrosion, Rio de Janeiro: LTC, 2003.Google Scholar
  5. 5.
    El-Naggar, M.M., Corros. Sci., 2007, vol. 49, p. 2226.CrossRefGoogle Scholar
  6. 6.
    Verna, C., Ebenso, E.E., and Quraishi, M.A., J. Mol. Liq., 2017, vol. 248, p. 927.CrossRefGoogle Scholar
  7. 7.
    Negm, N.A., Kandile, N.G., Badr, E.A., and Mohammed, M.A., Corros. Sci., 2012, vol. 65, p. 94.CrossRefGoogle Scholar
  8. 8.
    Lecante, A., Robert, F., Blandinières, P.A., and Roos, C., Curr. Appl. Phys., 2011, vol. 11, p. 714.CrossRefGoogle Scholar
  9. 9.
    Umoren, S.A. and Ebenso, E.E., Pigm. Resin Technol., 2008, vol. 373, p. 173.CrossRefGoogle Scholar
  10. 10.
    M’hiri, N., Veys-Renaux, D., Rocca, E., Ioannou, I., Boudhrioua, N.M., and Ghoul, M., Corros. Sci., 2016, vol. 102, p. 55.CrossRefGoogle Scholar
  11. 11.
    Neske, A., Brandán, S.A., and Gervasi, C.A., J. Ind. Eng. Chem., 2018, vol. 58, p. 92.CrossRefGoogle Scholar
  12. 12.
    Alibakhshi, E., Ramezanzadeh, M., Bahlakeh, G., Ramezanzadeh, B., and Motamedi, M., J. Mol. Liq., 2018, vol. 255, p. 185.CrossRefGoogle Scholar
  13. 13.
    Loto, R.T., Results Phys., 2018, vol. 8, p. 172.CrossRefGoogle Scholar
  14. 14.
    Tezeghdenti, M., Dhouibi, L., and Etteyeb, N., J. Bio-Tribo-Corros., 2015, p. 1.Google Scholar
  15. 15.
    El Ouariachi, E.M., Paolini, J., Bouklah, M., Elidrissi, A., Bouyanzar, A., Hammouti, B., Desjobert, J.M., and Costa, J., Acta Metall. Sin., 2010, vol. 23, p. 13.Google Scholar
  16. 16.
    Odiongenyi, A.O., Odoemelam, S.A., and Eddy, N.O., Port. Electrochim. Acta, 2009, vol. 27, p. 33.CrossRefGoogle Scholar
  17. 17.
    Gerengi, H., Jazdzewska, A., and Kurtay, M., J. Adhes. Sci. Technol., 2015, vol. 29, p. 36.CrossRefGoogle Scholar
  18. 18.
    Etteyeb, N. and Nóvoa, X.R., Corros. Sci., 2016, vol. 112, p. 471.CrossRefGoogle Scholar
  19. 19.
    Yee, Y.J., Doctoral Thesis, Manchester: Institute of Science and Technology, 2004.Google Scholar
  20. 20.
    Pourriahi, M., Esfahani, M.N., and Motalebi, A., Surf. Eng. Appl. Electrochem., 2014, vol. 50, p. 525.CrossRefGoogle Scholar
  21. 21.
    Shabani-Nooshabadi, M. and Ghandchi, M.S., J. Ind. Eng. Chem., 2015, vol. 31, p. 231.CrossRefGoogle Scholar
  22. 22.
    Challouf, H., Souissi, N., Messaouda, M.B., Abidi, R., and Madani, A., J. Environ. Prot., 2016, vol. 7, p. 532.CrossRefGoogle Scholar
  23. 23.
    Pradityana, A., Shahab, A., Noerochim, L., and Susanti, D., Int. J. Corros., 2016, vol.20, p. 1.CrossRefGoogle Scholar
  24. 24.
    Omotoyinbo, J.A., Oloruntoba, D.T., and Olusegun, S.J., Int. J. Sci. Technol., 2013, vol. 2, p. 510.Google Scholar
  25. 25.
    Ben Amor, Y., Bousselmi, L., Takenouti, H., and Triki, E., Corros. Eng., Sci. Technol., 2005, vol. 40, p. 129.CrossRefGoogle Scholar
  26. 26.
    Bousselmi, L., Fiaud, C., Tribollet, B., and Triki, E., Corros. Sci., 1977, vol. 39, p. 1711.CrossRefGoogle Scholar
  27. 27.
    Bousselmi, L., Fiaud, C., Tribollet, B., and Triki, E., Electrochim. Acta, 1999, vol. 44, p. 4357.CrossRefGoogle Scholar
  28. 28.
    Refait, Ph., Grolleau, A.-M., Jeannin, M., François, E., and Sabot, R., Corros. Sci., 2018, vol. 130, p. 76.CrossRefGoogle Scholar
  29. 29.
    Wang, X. and Melchers, R.E., J. Loss Prev. Process Ind., 2017, vol. 45, p. 29.CrossRefGoogle Scholar
  30. 30.
    Ben Amor, Y., Bousselmi, L., Tribollet, B., and Triki, E., Electrochim. Acta, 2010, vol. 55, p. 4820.CrossRefGoogle Scholar
  31. 31.
    Hissel, J., Trib. Eau, 1998, vol. 51, p. 3.Google Scholar
  32. 32.
    Sadiq, A., Hayat, M.Q., and Mall, S.M., Nat. Prod. Chem. Res., 2014, vol. 2, p. 1.CrossRefGoogle Scholar
  33. 33.
    Xiong, Q., Kadota, S., Tani, T., and Namba, T., Biol. Pharm. Bull., 1996, vol. 19, p. 1580.CrossRefGoogle Scholar
  34. 34.
    Weckerle, B., Michel, K., Balázs, B., Schreier, P., and Tóth, G., Phytochemistry, 2001, vol. 57, p. 547.CrossRefGoogle Scholar
  35. 35.
    Schulz, H. and Baranska, M., Vib. Spectrosc., 2007, vol. 43, p. 13.CrossRefGoogle Scholar
  36. 36.
    Luz, B.R.D., New Phytol., 2006, vol. 172, p. 305.CrossRefGoogle Scholar
  37. 37.
    Tezeghdenti, M., Etteyeb, N., Dhouibi, L., Kanoun, O., and Ammar Al-Hamri, A., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 753.CrossRefGoogle Scholar
  38. 38.
    Zhou, X., Yang, H., and Wang, F., Corros. Sci., 2012, vol. 54, p.193.CrossRefGoogle Scholar
  39. 39.
    Singh, A.K. and Quraishi, M.A., Corros. Sci., 2010, vol. 52, p. 1373.CrossRefGoogle Scholar
  40. 40.
    El-Taib Heakal, F., Deyab, M.A., Osman, M.M., and Elkholy, A.E., Desalination, 2018, vol. 425, p. 111.CrossRefGoogle Scholar
  41. 41.
    Valcarce, M.B. and Vázquez, M., Corros. Sci., 2010, vol. 52, p. 1413.CrossRefGoogle Scholar
  42. 42.
    Zhang, B., He, Ch., Wang, Ch., Sun, P., Li, F., and Lin, Y., Corros. Sci., 2015, vol. 94, p. 6.CrossRefGoogle Scholar
  43. 43.
    Guitián, B., Nóvoa, X.R., and Puga, B., Electrochim. Acta, 2011, vol. 56, p. 7772.CrossRefGoogle Scholar
  44. 44.
    Andrade, C., Merino, P., Nóvoa, X.R., Pérez, M.C., and Soler, L., Mater. Sci. Forum, 1995, vol. 192, p. 891.CrossRefGoogle Scholar
  45. 45.
    Malinovschi, V., Ducu, C., Aldea, N., and Fulger, M., J. Nucl. Mater., 2006, vol. 352, p. 107.CrossRefGoogle Scholar
  46. 46.
    Cui, H., Liu, Y., and Ren, W., Adv. Powder Technol., 2013, vol. 24, p. 93.CrossRefGoogle Scholar
  47. 47.
    Kontoyannis, C.G. and Vagenas, N.V., Analyst, 2000, vol. 125, p. 251.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Wahiba Ebdelly
    • 1
    • 2
  • Samia Ben Hassen
    • 1
  • X Ramón Nóvoa
    • 3
  • Yasser Ben Amor
    • 1
    Email author
  1. 1.Laboratoire de Recherche Sciences et Technologies de l’Environnement, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cédria, Université de CarthageHammam-LifTunisia
  2. 2.Faculté des Sciences de Mathématiques, Physiques et Naturelles de Tunis, Université Tunis El ManarTunisTunisia
  3. 3.ENCOMAT Group, E.E.I, University of VigoVigoSpain

Personalised recommendations