Advertisement

Effects of Heat Treatments on the Corrosion Behavior of 13Cr Stainless Steels in Chloride Solutions Containing Carbon Dioxide

  • L. L. Sun
  • M. H. Gao
  • Y. WangEmail author
  • X. Y. ZhangEmail author
PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • 2 Downloads

Abstract

Various electrochemical measurements were adopted to explore the effects of heat treatments on the corrosion resistance of 13Cr martensitic stainless steels in Cl solutions containing carbon dioxide. Phase contents and lattice strains were measured by Matlab image processing and X-ray diffraction, respectively. The compositions of passive film were tested by X-ray photoelectron spectroscopy. The results showed that the enhancement of austenitized temperature can improve the pitting resistance, whereas uniform corrosion resistance can be injured by the formation of retained austenite. The quenched specimen exhibited enhanced passivation stability in long-term immersion tests. Tempering at 280°C as the optimum process can guarantee 13Cr stainless steel a refined microstructure with reasonable internal stress and easy to obtain an intact protective passive film, which can serviced in complicated CO2 and Cl corrosion environment.

Keywords:

electrochemical corrosion heat treatment microstructure stainless steel XPS 

Notes

ACKNOWLEDGMENTS

This work was supported by the assisted project by Heilong Jiang Postdoctoral Funds for scientific research initiation(LBH-Q16036).

REFERENCES

  1. 1.
    Moiseeva, L.S., Prot. Met., 2005, vol. 41, p. 76.CrossRefGoogle Scholar
  2. 2.
    Popov, Yu.A., Saha, S., and Mouhammad, S., Prot. Met., 2000, vol. 36, p. 146.CrossRefGoogle Scholar
  3. 3.
    Ma, X.P., Wang, L.J., Liu, C.M., and Subramanian, S.V., Mater. Sci. Eng., A, 2012, vol. 271, p. 539.Google Scholar
  4. 4.
    Lin, Y.L., Lin, C.C., Tsai, T.H., and Lai, H.J., Mater. Manuf. Processes, 2010, vol. 246, p. 25.Google Scholar
  5. 5.
    Park, J.Y. and Park, Y.S., Mater. Sci. Eng., A, 2007, vol. 1131, pp. 449–451.Google Scholar
  6. 6.
    Garcia de Andres, C., Caruana, G., and Alvarez, L.F., Mater. Sci. Eng., A, 1998, vol. 211, p. 241.Google Scholar
  7. 7.
    Tsai, M.C., Chiou, C.S., Du, J.S., and Yang, J.R., Mater. Sci. Eng., A, 2002, vol. 1, p. 332.Google Scholar
  8. 8.
    Xu, L.Q., Yan, Z.S., Liu, Y.C., Li, H.J., Ning, B.Q., and Qiao, Z.X., J. Mater. Res., 2013, vol. 2835, p. 28.Google Scholar
  9. 9.
    Song, Y.Y., Ping, D.H., Yin, F.X., Li, X.Y., Li, Y.Y., Mater. Sci. Eng., A, 2010, vol. 614, p. 527.Google Scholar
  10. 10.
    Xu, L.Q., Zhang, D.T., Liu, Y.C., Ning, B.Q., Qiao, Z.X., Yan, Z.S., and Li, H.J., J. Mater. Res., 2013, vol. 1529, p. 28.Google Scholar
  11. 11.
    Buytoz, S., Mater. Lett., 2006, vol. 605, p. 60.Google Scholar
  12. 12.
    Ernst, F., Li, D.Q., Kahn, H., Michal, G.M., and Heuer, A.H., Acta Mater., 2011, vol. 2268, p. 59.Google Scholar
  13. 13.
    Nakagawa, H. and Miyazaki, T., J. Mater. Sci., 1999, vol. 3901, p. 34.Google Scholar
  14. 14.
    Conde, A. and Damborenea, J., Corros. Sci., 2000, vol. 1363, p. 42.Google Scholar
  15. 15.
    Wang, Y., Jiang, S.L., Zheng, Y.G., Ke, W., Sun, W.H., and Wang, J.Q., Surf. Coat. Technol., 2011, vol. 1307, p. 206.Google Scholar
  16. 16.
    Isfahany, A.N., Saghafian, H., and Borhani, G., J. Alloys Compd., 2011, vol. 3931, p. 509.Google Scholar
  17. 17.
    Xiong, X.C., Chen, B., Huang, M.X., Wang, J.F., and Wang, L., Scr. Mater., 2013, vol. 321, p. 68.Google Scholar
  18. 18.
    Behbahani, K.M. and Pakshir, M., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 1027.CrossRefGoogle Scholar
  19. 19.
    Alvarez, L.F., Garcia, C., and Lopez, V., ISIJ Int., 1994, vol. 516, p. 34.Google Scholar
  20. 20.
    Xiang, X., Chen, C.A., and Jiang, C.L., Rare Met. Mater. Eng., 2011, vol. 1610, p. 40.Google Scholar
  21. 21.
    Nakagawa, H. and Miyazaki, T., J. Mater. Sci., 1999, vol. 3901, p. 34.Google Scholar
  22. 22.
    Wang, Y., Zheng, Y.G., Ke, W., Sun, W.H., Hou, W.L., Chang, X.C., and Wang, J.Q., Corros. Sci., 2011, vol. 3177, p. 53.Google Scholar
  23. 23.
    Ju, P.F., Zuo, Y., Tang, Y.M., and Zhao, X.H., Corros. Sci., 2013, vol. 330, p. 66.Google Scholar
  24. 24.
    Pedraza, F., Roman, E., Cristobal, M.J., Hierro, M.P., and Perez, F.J., Thin Solid Films, 2002, vol. 231, p. 414.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.School of Mechanical Science and Engineering, Northeast Petroleum UniversityDaqingChina
  2. 2.Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution PreventionDaqingHeilongjiangChina
  3. 3.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of SciencesShenyangP.R. China

Personalised recommendations