Catalytic Properties of K2Ti2O5 + K2Ti4O9/TiO2/TiO2 + SiO2/Ti Composites and Their Resistance to Environment Effects during the Process of Carbon Black Oxidation

  • P. G. ChigrinEmail author
  • E. A. Kirichenko
  • V. S. RudnevEmail author
  • I. V. Lukiyanchuk
  • T. P. Yarovaya


A catalyst for oxidation of carbon black based on potassium dititanate has been synthesized. The catalyst has been fabricated by impregnation of oxidized titanium surface additionally modified with a sublayer of anatase nanoparticles by potassium hydroxide. It has been shown that the synthesized composites exhibit high capacity for oxidation of diesel carbon black, while the applied catalytic layer is characterized by resistance to adhesive and cohesive destruction along with a satisfactory resistance to thermal shock and impact of catalyst poisons. The temperatures of initiation and termination of the catalytic process are in the range 340–550°С and comply with the temperature ranges of the practically applied catalysts.


potassium dititanate thermochemical stability carbon black particles oxidation catalysts 



The present study was partially supported by the “Far East” Program of Basic Research (project no. 18-3-034).


  1. 1.
    Krylova, A.V. and Mikhailichenko, A.I., Khim. Tekhnol., 2003, no. 2, p. 13.Google Scholar
  2. 2.
    Krishna, K., Bueno-López, A., Makkee, M., and Moulijn, J.A., Appl. Catal., B, 2007, vol. 75, p. 201.CrossRefGoogle Scholar
  3. 3.
    Guido, S., Serra, V., Badini, C., and Specchia, V., Ind. Eng. Chem. Res., 1997, vol. 36, no. 6, p. 2051.CrossRefGoogle Scholar
  4. 4.
    Sui, L., Yu, L., and Zhang, Y., Energy Fuels, 2006, vol. 20, p. 1392.CrossRefGoogle Scholar
  5. 5.
    Doorn, J., Varloud, J., Moriaudeau, P., and Perrichon, V., Appl. Catal., B, 1992, vol. 1, p. 117.CrossRefGoogle Scholar
  6. 6.
    Banus, E.D., Milt, V.G., Miro, E.E., and Ulla, M.A., Appl. Catal., A, 2010, vol. 379, p. 95.Google Scholar
  7. 7.
    Turakulova, A.O., Zaletova, N.V., and Lunin, V.V., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 8, p. 1309.CrossRefGoogle Scholar
  8. 8.
    Gao, Y., Wu, X., and Liu, S., RSC Adv., 2016, vol. 6, p. 57033.CrossRefGoogle Scholar
  9. 9.
    Flouty, R., Abi-Aad, E., Siffert, S., and Aboukaıs̈, A., Appl. Catal., B, 2003, vol. 46, p. 145.CrossRefGoogle Scholar
  10. 10.
    Gross, M.S., Ulla, M.A., and Querini, C.A., Appl. Catal., A, 2009, vol. 360, p. 81.Google Scholar
  11. 11.
    Zhang, Z., Zhang, Y., Wang, Z., and Gao, X., J. Catal., 2010, vol. 271, p. 12.CrossRefGoogle Scholar
  12. 12.
    Gong, C., Song, Ch., Pei, Y., et al., Ind. Eng. Chem. Res., 2008, vol. 47, p. 4374.CrossRefGoogle Scholar
  13. 13.
    Peng, X., Lin, H., Shangguan, W., and Huang, Z., Ind. Eng. Chem. Res., 2006, vol. 45, p. 8822.CrossRefGoogle Scholar
  14. 14.
    An, H., Kilroy, C., and McGinn, P.J., Catal. Today, 2004, vol. 98, p. 423.CrossRefGoogle Scholar
  15. 15.
    Meng, X., Wang, Q., et al., Kinet. Catal., 2012, vol. 53, no. 5, p. 560.CrossRefGoogle Scholar
  16. 16.
    Wang, Q., Chung, J.-Sh., and Guo, Z., Ind. Eng. Chem. Res., 2011, vol. 50, p. 8384.CrossRefGoogle Scholar
  17. 17.
    Meng, X., Gao, Y., et al., China Pet. Process. Petrochem. Technol., 2012, vol. 14, no. 2, p. 50.Google Scholar
  18. 18.
    Kondrikov, N.B., Rudnev, V.S., Vasil’eva, M.S., et al., Khim. Interesakh Ustoich. Razvit., 2005, vol. 13, no. 6, p. 851.Google Scholar
  19. 19.
    Vasil'eva, M.S., Rudnev, V.S., Tyrina, L.M., et al., Russ. J. Appl. Chem., 2005, vol. 78, no. 11, p. 1859.CrossRefGoogle Scholar
  20. 20.
    Vasil'eva, M.S., Rudnev, V.S., Kondrikov, N.B., et al., Russ. J. Appl. Chem., 2004, vol. 77, no. 2, p. 218.CrossRefGoogle Scholar
  21. 21.
    Lukiyanchuk, I.V., Rudnev, V.S., and Tyrina, L.M., Surf. Coat. Technol., 2016, vol. 307, p. 1183.CrossRefGoogle Scholar
  22. 22.
    Karakurkchi, A., Sakhnenko, M., Ved, M., et al., East.-Eur. J. Enterp. Technol., 2017, vol. 5, no. 10 (89), p. 12.Google Scholar
  23. 23.
    Lebukhova, N.V., Rudnev, V.S., Chigrin, P.G., et al., Surf. Coat. Technol., 2013, vol. 231, p. 144.CrossRefGoogle Scholar
  24. 24.
    Lebukhova, N.V., Rudnev, V.S., Kirichenko, E.A., et al., Surf. Coat. Technol., 2015, vol. 261, p. 344.CrossRefGoogle Scholar
  25. 25.
    Karpovich, N.F., Korol’kov, I.V., Makarevich, K.S., et al., Fundam. Probl. Sovrem. Tekhnol. Materialoved., 2012, vol. 9, no. 1, p. 34.Google Scholar
  26. 26.
    Gorokhovskii, A.V., RF Patent 2326051, 2008.Google Scholar
  27. 27.
    Wang, Q., Guo, Z., and Chung, J.-Sh., Mater. Res. Bull., 2009, vol. 44, p. 1973.CrossRefGoogle Scholar
  28. 28.
    Rudnev, V.S., Malyshev, I.V., et al., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 4, p. 455.CrossRefGoogle Scholar
  29. 29.
    Vasilyeva, M.S., Rudnev, V.S., Wiedenmann, F., et al., Appl. Surf. Sci., 2011, vol. 258, p. 719.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Materials Science, Khabarovsk Scientific Center, Far East Branch, Russian Academy of SciencesKhabarovskRussia
  2. 2.Institute of Chemistry, Far East Branch, Russian Academy of SciencesVladivostokRussia
  3. 3.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations