Advertisement

A Study of the Initial Stages of Local Dissolution of Carbon Steel in Chloride Solution

  • N. A. GladkikhEmail author
  • M. A. Maleeva
  • L. B. Maksaeva
  • M. A. Petrunin
GENERAL ISSUES OF CORROSION

Abstract

The simultaneous application of optical and electrochemical methods has allowed us to investigate in detail the initial stages of the local dissolution of steel in a chloride-containing solution. The incubation period, the rate of defect formation on the surface, and the rate of individual defects development have been evaluated with high precision. It has been demonstrated that the emergence and development of local defects is possible under potentials more negative than the pitting potential determined from the polarization curve. The metal dissolution rates that occur at the initial stages of pitting formation from an individual defect have been calculated. It has been established that the initial process of defect formation under anode polarization consisted of two stages. The first stage corresponds to the emergence and intense formation of the freshly formed defect and is primarily determined by electrode potential. The second stage is shown by the development of a defect that did not depend on potential.

Keywords:

steel local dissolution pitting optical investigation methods corrosion imaging 

Notes

ACKNOWLEDGMENTS

This work was supported by Russian Foundation for Basic Research, grants no. 16-08-00445 and no. 17-03-00232.

REFERENCES

  1. 1.
    Din’, V.V., Atmosfernaya korroziya v tropikakh (Atmospheric Corrosion in Tropical Climate), Moscow: Nauka, 1994.Google Scholar
  2. 2.
    Abiev, R.Sh., Bibik, E.E., Vlasov, B.S., Ermakov, B.S., Zotikov, V.S., Ivanov, V.A., Simakova, S.A., Suvorov, K.A., Khokhryakov, K.A., and Yablokova, M.A., Novyi spravochnik khimika i tekhnologa. Elektrodnye protsessy. Khimicheskaya kinetika i diffuziya. Kolloidnaya khimiya (New Handbook for Chemist and Technologist. Electrode Processes. Chemical Kinetics and Diffusion. Colloid Chemistry), Moscow: Professional, 2006.Google Scholar
  3. 3.
    Gutman, E.M., Mekhanokhimiya metallov i zashchita ot korrozii (Mechanical Chemistry of Metals and Corrosion Protection), Moscow: Metallurgiya, 1981.Google Scholar
  4. 4.
    Cheng, Y.F., Stress Corrosion Cracking of Pipelines, Hoboken, NJ: John Wiley & Sons, 2013, p. 89.CrossRefGoogle Scholar
  5. 5.
    Bohni, H. and Uhlig, H.H., J. Electrochem. Soc., 1969, no. 116, p. 906.Google Scholar
  6. 6.
    Heusler, K.E. and Fischer, L., Werkst. Korros., 1976, no. 27, p. 550.Google Scholar
  7. 7.
    Weil, K.G. and Menzel, D., Z. Elektrochem., 1959, no. 63, p. 669.Google Scholar
  8. 8.
    Hoar, T.P., Mears, D.C., and Rothwell, G.P., Corros. Sci., 1965, no. 5, p. 279.Google Scholar
  9. 9.
    Localized Corrosion, McBee, M.L., Kruger, J., Staehle, R., Brown, B., and Agrawal, A., Eds., Houston, TX: National Association of Corrosion Engineers, 1974, p. 252.Google Scholar
  10. 10.
    Hoar, T.P., Corros. Sci., 1967, no. 7, p. 335.Google Scholar
  11. 11.
    Sato, N., Electrochim. Acta, 1971, no. 16. p. 1683.Google Scholar
  12. 12.
    Lochel, B.P. and Strehblow, H.H., Werkst. Korros., 1980, no. 31, p. 353.Google Scholar
  13. 13.
    Kuznetsov, Yu.I., Zashch. Met., 1987, vol. 23, p. 739.Google Scholar
  14. 14.
    Sato, N., J. Electrochem. Soc., 1982, no. 129, p. 255.Google Scholar
  15. 15.
    Chao, C.Y., Lin, L.F., and Macdonald, D.D., J. Electrochem. Soc., 1981, no. 128, p. 1187.Google Scholar
  16. 16.
    Lin, L.F., Chao, C.Y., and Macdonald, D.D., J. Electrochem. Soc., 1981, no. 128, p. 1194.Google Scholar
  17. 17.
    Macdonald, D.D., J. Electrochem. Soc., 1992, no. 139, p. 3434.Google Scholar
  18. 18.
    Galvele, J.R., J. Electrochem. Soc., 1976, no. 123, p. 464.Google Scholar
  19. 19.
    Galvele, J.R., Lumsden, J.B., and Staehle, R.W., J. Electrochem. Soc., 1978, no. 125, p. 1204.Google Scholar
  20. 20.
    Kuznetsov, Yu.I. and Garmanov, M.E., Elektrokhimiya, 1987, vol. 23, no. 3, pp. 381–387.Google Scholar
  21. 21.
    Freiman, L.I., Itogi Nauki Tekh., Ser.: Korroz. Zashch. Korroz., 1985, vol. 11, pp. 31–39.Google Scholar
  22. 22.
    Zimmer, A.M., De Carra, A.S., Rios, E.C., Pereira, E.C., and Mascaro, L.H., Corros. Sci., 2013, p. 258.Google Scholar
  23. 23.
    Amin, M.M., Abderlehim, S.S., and Elsherbini, A.E., Electrochim. Acta, 2006, no. 51, p. 4754.Google Scholar
  24. 24.
    Rybalka, K.V., Shaldaev, V.S., Beketaeva, L.A., Malofeeva, A.N., and Davydov, A.D., Russ. J. Electrochem., 2010, vol. 46, no. 2, p. 196.CrossRefGoogle Scholar
  25. 25.
    GOST (State Standard) no. 25593–83: Diamond pastes. Specifications, Moscow: Standartinform, 1989.Google Scholar
  26. 26.
    Pratt, W., Digital Image Processing, New York: John Wiley and Sons, 1991.Google Scholar
  27. 27.
    Soifer, V.A., Metody komp’yuternoi obrabotki izobrazhenii (Methods for Image Processing), Moscow: Fizmatgiz, 2001.Google Scholar
  28. 28.
    Acharya, T. and Ray, A.K., Image Processing: Principles and Applications, John Wiley and Sons, 2005, p. 428.CrossRefGoogle Scholar
  29. 29.
    Kuznetsov, Yu.I. and Valuev, I.A., Elektrokhimiya, 1984, vol. 20, p. 424.Google Scholar
  30. 30.
    Kuznetsov, Yu.I. and Valuev, I.A., Zashch. Met., 1986, vol. 22, no. 1, p. 89.Google Scholar
  31. 31.
    Kolotyrkin, Ya.M., Itogi Nauki Tekh., Ser.: Korroz. Zashch. Korroz., 1975, vol. 4, p. 180.Google Scholar
  32. 32.
    Kuznetzov, Y.I. and Tomas, J.N., Organic Inhibitors of Corrosion of Metals, New York, London: Plenum Press, 1996, p. 285.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Gladkikh
    • 1
    Email author
  • M. A. Maleeva
    • 1
  • L. B. Maksaeva
    • 1
  • M. A. Petrunin
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations