Advertisement

Investigation of Microstructural Humid Deformations in Epoxy Fiberglass at Heat-Humidity Corrosion Using Fiber-Optic Deformation sensors

  • A. A. DalinkevichEmail author
  • P. V. Mikheev
  • S. A. Gusev
  • T. N. Igonin
  • L. B. Maksaeva
  • T. A. Nenasheva
CORROSION AND AGING OF NONFERROUS MATERIALS
  • 11 Downloads

Abstract

In the present work, the possibility of using integrated fiber-optic deformation sensors (Bragg’s sensors) to control the state of the fiberglass on an epoxy anhydride hot cure binder is studied. Sensors are located in different layers of the layered plastic reinforced by a biaxial fiberglass cloth. A package has a quasi-isotropic structure. A sample is prepared by the method of vacuum impregnation and it is exposed to the action of water vapor with the relative humidity of 95% at 80°C. It is found that the moisture sorption in the composite occurs by a relaxation mechanism and is accompanied by a nonmonotonic change of swelling deformation in different layers of epoxy fiberglass. The swelling deformations in different layers of fiberglass are detected, their evolution during heat-humidity corrosion is shown, and, based on these data, the working capacity of the system of the measurements of the humid deformations of the fiberglass using for pipe production is confirmed.

Keywords:

fiberglass heat-humidity corrosion aging multiaxial fiberglass cloth fiber-optic Bragg’s deformation sensors moisture absorption 

Notes

REFERENCES

  1. 1.
    Baer, E., Engineering Design for Plastics, R. E. Krieger Pub., 1975.Google Scholar
  2. 2.
    Sovremennye fizicheskie metody issledovaniya polimerov (Modern Physical Methods for Researching Polymers), Slonimskii, G.L., Ed., Moscow: Khimiya, 1982, pp. 198–208.Google Scholar
  3. 3.
    Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation, Cusano, A., Cutolo, A., and Albert, J., Eds., Bentham Science Publ., 2010, pp. 35–52.Google Scholar
  4. 4.
    Kul’chin, Yu.N., Raspredelennye volokonno-opticheskie datchiki i izmeritel’nye seti (Distributed Fiber-Optic Sensors and Measuring Nets), Vladivostok: Dal’nauka, 1999, pp. 115–118.Google Scholar
  5. 5.
    Mikheev, P.V., Artem’ev, A.V., Lazarev, V.A., Pnev, A.B., and Nelyub, V.A., Sbornik dokladov Vserossiiskoi konferntsii po ispytaniyam i issledovaniyam svoistv materialov TEST-MAT-2013 (Proc. All-Russian Conference on Testing and Researching Materials Properties TEST-MAT-2013), Moscow: All-Russian Scientific Research Institute of Aviation Materials, 2013, p. 28.Google Scholar
  6. 6.
    Shishkin, V.V., Churin, A.E., Kharenko, D.S., and Shelemba, I.S., Foton-Ekspress, 2013, vol. 6, no. 110, pp. 22–23.Google Scholar
  7. 7.
    Shishkin, V.V., Churin, A.E., Kharenko, D.S., Zheleznova, M.A., and Shelemba, I.S., Proc. 23rd Int. Conference on Optical Fibre Sensors, Santander, 2014, 9157D3. doi 10.1117/12.207126910.1117/12.2071269Google Scholar
  8. 8.
    Sarbaev, B.S., Smerdov, A.A., Tairova, L.P., Seleznev, V.A., Sokolov, S.V., Buimistryuk, G.Ya., Izotov, V.I., and Rogov, A.M., Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Ser. “Mashinostr.”, 2011, no. SP, pp. 39–51.Google Scholar
  9. 9.
    Mathijsen, D., Reinf. Plast., 2015, vol. 59, no. 3, pp. 139–142.CrossRefGoogle Scholar
  10. 10.
    Kersey, A.D., Opt. Fiber Technol., 1996, vol. 2, no. 3, pp. 291–317.CrossRefGoogle Scholar
  11. 11.
    Othonos, A. and Kalli, K., Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, London: Artech House, 1999.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Dalinkevich
    • 1
    Email author
  • P. V. Mikheev
    • 2
  • S. A. Gusev
    • 2
  • T. N. Igonin
    • 1
  • L. B. Maksaeva
    • 1
  • T. A. Nenasheva
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations