Advertisement

Adsorption of Sodium Oleyl Sarcosinate on Zinc and Its Passivating Action in Neutral Aqueous Solution

  • M. O. Agafonkina
  • A. M. Semiletov
  • Yu. I. KuznetsovEmail author
  • N. P. Andreeva
  • A. A. Chirkunov
CORROSION INHIBITORS
  • 1 Downloads

Abstract

The adsorption, protective, and passivating effect of some sodium salts of higher carboxylates and sodium dioctyl phosphate on zinc in borate buffer solution with pH of 7.4 were studied. It has been shown that sodium oleyl sarcosinate has the best protective and adsorption properties. It has been established that the adsorption of oleyl sarcosinate on zinc is multilayer, which contributes to its best protection under anodic dissolution and in a humid atmosphere with periodic condensation of moisture on the samples. Treatment of Zn in aqueous solutions of inhibitors increases the time until the appearance of the first corrosion lesions on it under conditions of humid atmosphere 2.5–4.5 times.

Keywords:

corrosion zinc corrosion inhibitors adsorption passivity carboxylates 

Notes

ACKNOWLEDGMENTS

This work was supported partially by the Russian Foundation for Basic Research, grant no. 13-03-00188 “Modification of the Surface of Copper, Nickel, and Zinc with Nanolayers of Organic Corrosion Inhibitors and Features of Kinetics of Their Formation.”

REFERENCES

  1. 1.
    Winkler, D.A., Breedon, M., Hughes, A.E., Burden, F.R., Barnard, A.S., Harvey, T.G., and Cole, I., Green Chem., 2014, vol. 16, pp. 3349–3357.CrossRefGoogle Scholar
  2. 2.
    Ekilik, V.V., Chernyavina, V.V., Ekilik, G.N., and Ovasapyan, A.V., Kondens. Sredy Mezhfaznye Granitsy, 2005, vol. 7, no. 3, pp. 335–342.Google Scholar
  3. 3.
    Kuznetsov, Yu.I. and Kazanskii, L.P., Usp. Khim., 2008, vol. 77, no. 3, pp. 227–242.CrossRefGoogle Scholar
  4. 4.
    Andreeva, N.P., Ushakova, Yu.V., Kuznetsov, Yu.I., Agafonkina, M.O., and Kazanskii, L.P., Korroz.: Mater., Zashch., 2013, no. 9, pp. 24–30.Google Scholar
  5. 5.
    Rocca, E., Caillet, C., Mesbah, A., Francois, M., and Steinmetz, J., Chem. Mater., 2006, vol. 18, pp. 6186–6193.CrossRefGoogle Scholar
  6. 6.
    Liu, S., Zhong, Y., Jiang, R., Zeng, Z., Feng, Z., and Xiao, R., Corros. Sci., 2011, vol. 53, no. 2, pp. 746–759.CrossRefGoogle Scholar
  7. 7.
    Almeida, E., Diamantino, T.C., Figueiredo, M.O., and Sá, C., Surf. Coat. Technol., 1998, vol. 106, pp. 8–17.CrossRefGoogle Scholar
  8. 8.
    Magalhaes, A.A.O., Margarit, I.C.P., and Mattos, O.R., J. Electroanal. Chem., 2004, vol. 572, pp. 433–440.CrossRefGoogle Scholar
  9. 9.
    Ferreira, M.G.S., Duarte, R.G., Montemor, M.F., and Simoes, A.M.P., Electrochim. Acta, 2004, vol. 49, pp. 2927–2935.CrossRefGoogle Scholar
  10. 10.
    Bellezze, T., Roventi, G., and Fratesi, R., Surf. Coat. Technol., 2002, vol. 155, pp. 221–230.CrossRefGoogle Scholar
  11. 11.
    Danahy, M.P., Avaltroni, M.J., Midwood, K.S., Schwarzbauer, J.E., and Schwartz, J., Langmuir, 2004, vol. 20, pp. 5333–5337.CrossRefGoogle Scholar
  12. 12.
    Gao, W., Dickinson, L., Grozinger, Ch., Morin, F.G., and Reven, L., Langmuir, 1996, vol. 12, pp. 6429–6435.CrossRefGoogle Scholar
  13. 13.
    Pilbath, A., Nyikos, L., Bertoti, I., and Kalman, E., Corros. Sci., 2008, vol. 50, pp. 3314–3321.CrossRefGoogle Scholar
  14. 14.
    Corrosion, Shraier, L.L., Ed., London: Newman Butterworths, 1976.Google Scholar
  15. 15.
    Abd El Aal, E.E., Corros. Sci., 2000, vol. 42, pp. 1–16.CrossRefGoogle Scholar
  16. 16.
    Zerjav, G. and Milosev, I., Int. J. Electrochem. Sci., 2014, vol. 9, pp. 2696–2715.Google Scholar
  17. 17.
    Kuznetsov, Yu.I., Organic Inhibitors of Corrosion of Metals, New York: Plenum Press, 1996.CrossRefGoogle Scholar
  18. 18.
    Rammelt, U., Kohler, S., and Reinhard, G., Electrochim. Acta, 2008, vol. 53, pp. 6968–6972.CrossRefGoogle Scholar
  19. 19.
    Boisier, G., Portail, N., and Pebere, N., Electrochim. Acta, 2010, vol. 55, no. 21, pp. 6182–6189.CrossRefGoogle Scholar
  20. 20.
    Dinodi, N. and Nityananda Shetty, A., Corros. Sci., 2014, vol. 85, pp. 411–427.CrossRefGoogle Scholar
  21. 21.
    Andreeva, N.P., Bober, Ya.G., and Kuznetsov, Yu.I., Korroz.: Mater., Zashch., 2009, no. 9, pp. 28–34.Google Scholar
  22. 22.
    Bober, Ya.G., Cand. Sci. (Chem.) Dissertation, Moscow: A.N. Frumkin Institute of Physical Chemistry and Electrochemistry Russ. Acad. Sci., 2009.Google Scholar
  23. 23.
    Agafonkina, M.O., Kuznetsov, Yu.I., and Andreeva, N.P., Russ. J. Phys. Chem. A, 2015, no. 6, pp. 1070–1076.Google Scholar
  24. 24.
    Kosec, T., Merl, D.K., and Milošev, I., Corros. Sci., 2008, vol. 50, no. 7, pp. 1987–1997.CrossRefGoogle Scholar
  25. 25.
    Aramaki, K., Corros. Sci., 2001, vol. 43, pp. 1985–2000.CrossRefGoogle Scholar
  26. 26.
    Aramaki, K., Corros. Sci., 2007, vol. 49, pp. 1963–1980.CrossRefGoogle Scholar
  27. 27.
    Aramaki, K. and Shimura, T., Corros. Sci., 2004, vol. 46, pp. 313–328.CrossRefGoogle Scholar
  28. 28.
    Andreeva, N.P. and Kuznetsov, Yu.I., Zashch. Met., 1987, vol. 23, no. 4, pp. 601–607.Google Scholar
  29. 29.
    Rylkina, M.V. and Kuznetsov, Yu.I., Korroz.: Mater., Zashch., 2008, no. 2, pp. 1–7.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. O. Agafonkina
    • 1
  • A. M. Semiletov
    • 1
  • Yu. I. Kuznetsov
    • 1
    Email author
  • N. P. Andreeva
    • 1
  • A. A. Chirkunov
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations