Influence of Ag Content on Microstructure, Mechanical and Tribological Properties of WNbN-Ag Composite Films
- 4 Downloads
Abstract
WNbN composite films with different Ag content were deposited by reactive multi-target magnetron sputtering. The microstructure, mechanical and tribological properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), high resolution transmission electron microscopy (HRTEM), nano-indentation and ball-on-disc tribo-mter analysis. The results indicated that WNbN-Ag film consists of face-centered cubic (fcc) WNbN, face-centered cubic (fcc) NbN, hexagonal close-packed (hcp) NbN and face-centered cubic (fcc) Ag. The hardness and elastic modulus of WNbN-Ag composite film decreases gradually as Ag content increases from 0 to 25.23 at %. At room temperature, the friction coefficient of the film firstly increases and then decreases, while the wear rate gradually increases with the increasing Ag content. As the temperature increases from room temperature to 700°C, the friction coefficient firstly increases and then decreases, while the wear rate gradually increases. The tribological properties of the film depended on the testing temperatures significantly because the testing temperatures influenced the hardness, the tribo-films and wear mechanism of the film.
Keywords:
magnetron sputtering WNbN-Ag composite film microstructure mechanical properties tribological propertiesNotes
ACKNOWLEDGMENTS
This paper supported by the National Natural Science Foundation of China (51374115, 51574131)
REFERENCES
- 1.Chu, K. and Shen, Y.G., Wear, 2008, vol. 265, p. 516.CrossRefGoogle Scholar
- 2.Xu, J., Ju, H., and Yu, L., Vacuum, 2014, vol. 110, p. 47.CrossRefGoogle Scholar
- 3.Ju, H. and Xu, J., Appl. Surf. Sci., 2015, vol. 355, p. 878.CrossRefGoogle Scholar
- 4.Yu, L., Zhao, H., and Xu, J., Appl. Surf. Sci., 2014, vol. 315, p. 380.CrossRefGoogle Scholar
- 5.Yu, L., Zhao, H., Ju, H., and Xu, J., Thin Solid Films, 2017, vol. 624, p. 144.CrossRefGoogle Scholar
- 6.Kadri Vefa Ezirmik, Surf. Coat. Technol., 2014, vol. 260, p. 179.CrossRefGoogle Scholar
- 7.Ju, H., Yu, L., Yu, D., Asempah, I., and Xu, J., Vacuum, 2017, vol. 141, p. 82.CrossRefGoogle Scholar
- 8.Kelly, P.J. and Li, H., Surf. Coat. Technol., 2009, vol. 204, p. 1137.CrossRefGoogle Scholar
- 9.Turutoglu, T., Urgen, M., Cakir, A.F., and Ozturk, A., Key Eng. Mater., 2004, vol. 264, p. 489.CrossRefGoogle Scholar
- 10.Klung, H.P. and Alexander, L.E., X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, New York: Wiley-Interscience, 1974.Google Scholar
- 11.Ju, H., Yu, D., Yu, L., et al., Vacuum, 2018, vol. 148, p. 54.CrossRefGoogle Scholar
- 12.Wu Wan-Yu, Wu Chia-Hao, Xiao Bo-Hong, et al., Vacuum, 2013, vol. 87, p. 209.CrossRefGoogle Scholar
- 13.Wei, Y. and Gong, C., Appl. Surf. Sci., 2011, vol. 257, p. 7881.CrossRefGoogle Scholar
- 14.Xu, J., Luo, H., Ju, H., Yu, L., and Zhou, G., Vacuum, 2017, vol. 146, p. 246.CrossRefGoogle Scholar
- 15.Ju, H. and Xu, J., Mater. Charact., 2015, vol. 107, p. 411.CrossRefGoogle Scholar
- 16.Mulligan, C.P. and Gall, D., Surf. Coat. Technol., 2005, vol. 200, pp. 1495–1500.CrossRefGoogle Scholar
- 17.Shtansky, D.V., Bondarev, A.V., Kiryukhantsev-Korneev, Ph.V., Rojas, T.C., Godinho, V., and Fernández, A., Appl. Surf. Sci., 2013, vol. 273, p. 408.CrossRefGoogle Scholar
- 18.Erdemir, A.A., Tribol. Lett., 2000, vol. 8, p. 97.CrossRefGoogle Scholar
- 19.Mulligana, C.P. and Blanchetb, T.A., Wear, 2010, vol. 269, p. 125.CrossRefGoogle Scholar
- 20.Hongbo Ju and Junhua Xu, Surf. Coat. Technol., 2017, vol. 15, p. 158.CrossRefGoogle Scholar