Plasma-Electrochemical Formation of Sn-Containing Oxide Layers on Titanium

  • M. S. Vasil’evaEmail author
  • V. S. RudnevEmail author
  • N. E. Zabudskaya


Coatings containing SnO2 have been formed on titanium by means of plasma electrolytic oxidation (PEO) in the electrolyte with EDTA-Sn2+ complex ions. The composition and morphology of the coatings have been investigated by means of scanning electron microscopy (SEM) and energy-dispersive and X-ray diffraction analysis (XRD). Application of the formed composites in the function of indicator electrodes has been examined. An external layer of the coatings containing tin has demonstrated a developed coral-like structure. Expressivity of the coral-like structure, as well as the concentration and distribution of tin in this layer depend on the current density of the galvanostatic formation. The composition and structure of Sn-containing coatings indicate that the outlook is promising for application of the formed Ti/TiO2/SnO2 composites as functional materials, for example, as photocatalysts, catalysts supports, and sensitive elements for recording devices.


plasma-electrolytic oxidation titanium tin oxide potentiometry 



  1. 1.
    Tripathy, S.K., Mishra, A., Jha, S.K., et al., J. Mater. Sci.: Mater. Electron., 2013, vol. 24, p. 2082.Google Scholar
  2. 2.
    Lavanya, N., Fazio, E., Neri, F., et al., Sens. Actuators, B, 2015, vol. 221, p. 1412.Google Scholar
  3. 3.
    Li, Ch., Lv, M., Zuo, J., et al., Sensors, 2015, vol. 15, p. 3789.Google Scholar
  4. 4.
    Xing, R.-Q., Xu, L., Zhu, Y.-Sh., et al., Sens. Actuators, B, 2013, vol. 188, p. 235.Google Scholar
  5. 5.
    Chen, J., Li, C., Xu, F., et al., RSC Adv., 2012, vol. 2, p. 7384.Google Scholar
  6. 6.
    Chen, J.S. and Lou, X.W.D., Small, 2013, vol. 9, p. 1877.Google Scholar
  7. 7.
    Lin, Y.M., Nagarale, R.K., and Klavetter, K.C., J. Mater. Chem., 2012, vol. 22, p. 11 134.Google Scholar
  8. 8.
    Ansari, S.A., Khan, M.M., Ansari, M.O., et al., New J. Chem., 2014, vol. 38, p. 2462.Google Scholar
  9. 9.
    Kim, S.P., Choi, M.Y., and Choi, H.C., Mater. Res. Bull., 2016, vol. 74, p. 85.Google Scholar
  10. 10.
    Wang, Q.Q., Lin, B.Z., Xu, B., et al., Microporous Mesoporous Mater., 2010, vol. 130, p. 344.Google Scholar
  11. 11.
    Prakash, K., Senthil, K.P., Pandiaraj, S., et al., J. Exp. Nanosci., 2016, vol. 11, p. 1138.Google Scholar
  12. 12.
    Tsai, C.-N., Chou, J.-C., Sun, T.-P., et al., Sens. Actuators, B, 2005, vol. 108, p. 877.Google Scholar
  13. 13.
    Pan, Ch.-We., Chou, J.-Ch., Sun, T.-P., et al., Sens. Actuators, B, 2005, vol. 108, p. 870.Google Scholar
  14. 14.
    Fog, A. and Buck, R.P., Sens. Actuators, 1984, vol. 5, p. 137.Google Scholar
  15. 15.
    Touidjen, N.H., Bendahmane, B., Zeggar, M.L., et al., Sens. Biosens. Res., 2016, vol. 11, p. 52.Google Scholar
  16. 16.
    Paloly, A.R., Satheesh, M., Martínez-Tomás, M.C., et al., Appl. Surf. Sci., 2015, vol. 357, p. 915.Google Scholar
  17. 17.
    Remes, Z., Vanecek, M., Yates, H.M., et al., Thin Solid Films, 2009, vol. 517, p. 6287.Google Scholar
  18. 18.
    Brown, J.R., Haycock, P.W., Smith, L.M., et al., Sens. Actuators, B, 2000, vol. 63, p. 109.Google Scholar
  19. 19.
    Lin, Ch.-H., Chang, Wei-Che, and Qi, X., Procedia Eng., 2012, vol. 36, p. 476.Google Scholar
  20. 20.
    Zhu, B.L., Liu, F., Li, K., et al., Ceram. Int., 2017, vol. 43, p. 10 288.Google Scholar
  21. 21.
    Gordienko, P.S., Rudnev, V.S., Gnedenkov, S.V., et al., Zh. Prikl. Khim., 1995, vol. 68, p. 971.Google Scholar
  22. 22.
    Chernenko, V.I., Snezhko, L.A., and Papanova, I.I., Poluchenie pokrytii anodno-iskrovym elektrolizom (Coatings Synthesized by means of Anode-Spark Electrolysis), Leningrad: Khimiya, 1991.Google Scholar
  23. 23.
    Gordienko, P.S. and Gnedenkov, S.V., Mikrodugovoe oksidirovanie titana i ego splavov (Microarc Oxidation of Titanium and its Alloys), Vladivostok: Dal’nauka, 1997, pp. 74–75.Google Scholar
  24. 24.
    Barchiche, C.-E., Rocca, E., and Hazan, J., Surf. Coat. Technol., 2008, vol. 202, p. 4145.Google Scholar
  25. 25.
    He, J., Cai, Q.Z., Xiao, F., et al., J. Alloys Compd., 2011, vol. 509, p. L11.Google Scholar
  26. 26.
    Stojadinović, S., Tadić, N., Radić, N., Grbić, B., and Vasilić, R., Mater. Lett., 2017, vol. 196, p. 292.Google Scholar
  27. 27.
    Timoshenko, A.V., Magurova, Yu.V., and Artemova, S.Yu., Fiz. Khim. Obrab. Mater., 1996, no. 2, p. 57.Google Scholar
  28. 28.
    Yarovaya, T.P., Gordienko, P.S., Rudnev, V.S., et al., Elektrokhimiya, 1994, vol. 30, p. 1395.Google Scholar
  29. 29.
    Yao, Z., Jiang, Y., Jiang, Z., et al., J. Mater. Process. Technol., 2008, vol. 205, p. 303.Google Scholar
  30. 30.
    Gnedenkov, S.V., Khrisanfova, O.A., and Zavidnaya, A.G., Plazmennoe elektroliticheskoe oksidirovanie metallov i splavov v tartratsoderzhashchikh rastvorakh (Plasma and Electrolytic Oxidation of Metals and Alloys in Tartarate-Containing Solutions), Vladivostok: Dal’nauka, 2008.Google Scholar
  31. 31.
    Rudnev, V.S., Yarovaya, T.P., Nedozorov, P.M., et al., Russ. J. Inorg. Chem., 2008, vol. 53, p. 1347.Google Scholar
  32. 32.
    Rudnev, V.S., Yarovaya, T.P., Boguta, D.L., et al., J. Electroanal. Chem., 2001, vol. 497, p. 150.Google Scholar
  33. 33.
    Rudnev, V.S., Lukiyanchuk, I.V., Boguta, D.L., et al., Prot. Met., 2002, vol. 38, no. 2, p. 191.Google Scholar
  34. 34.
    Lukiyanchuk, I.V., Rudnev, V.S., Kuryavyi, V.G., et al., Thin Solid Films, 2004, vol. 446, p. 54.Google Scholar
  35. 35.
    Dyatlova, N.M., Temkina, V.Ya., and Popov, K.I., Kompleksony i kompleksonaty metallov (Complexons and Complexonates of Metals), Moscow: Khimiya, 1988.Google Scholar
  36. 36.
    Vasil’eva, M.S., Rudnev, V.S., Ustinov, A.Yu., et al., Russ. J. Appl. Chem., 2010, vol. 83, p. 434.Google Scholar
  37. 37.
    Rogov, A.B., Mater. Chem. Phys., 2015, vol. 167, p. 136.Google Scholar
  38. 38.
    Rudnev, V.S., Adigamova, M.V., Lukiyanchuk, I.V., et al., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 6, pp. 671–677.Google Scholar
  39. 39.
    Rudnev, V.S., Morozova, V.P., Lukiyanchuk, I.V., et al., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 3, pp. 309–318.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Far Eastern Federal UniversityVladivostokRussia
  2. 2.Institute of Chemistry, Far Eastern Branch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations