On the Electrodeposition of Zinc-Based Composition Coatings in the Pulse Mode

  • V. N. TseluikinEmail author
  • A. A. Koreshkova


Zinc-based composition electrochemical coatings (CECs) modified with carbon nanotubes (CNTs) have been fabricated in the pulse mode of electrolysis. Their microstructure and functional properties (sliding friction coefficient and protective ability) have been studied. It has been determined that the sliding friction coefficient of the CECs decreases by 1.32–1.43 times with the introduction of the CNT dispersion into ammonium sulfate zinc solution, while the passivity range of these coatings increases by a factor of 1.35–1.39.



  1. 1.
    Antropov, L.I. and Lebedinskii, Yu.N., Kompozitsionnye elektrokhimicheskie pokrytiya i materialy (Composite Electrochemical Coatings and Materials), Kiev: Tekhnika, 1986.Google Scholar
  2. 2.
    Saifullin, R.S., Fizikokhimiya neorganicheskikh polimernykh i kompozitsionnykh materialov (Physical Chemistry of Inorganic Polymer and Composite Materials), Moscow: Khimiya, 1990.Google Scholar
  3. 3.
    Tseluikin, V.N., Nanotechnol. Russ., 2014, vol. 9, nos. 1–2, p. 1.CrossRefGoogle Scholar
  4. 4.
    Tseluikin, V.N., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p. 254.CrossRefGoogle Scholar
  5. 5.
    Okulov, V.V., Tsinkovanie. Tekhnika i tekhnologiya (Zinc Coating. Technique and Technology), Moscow: Globus, 2008.Google Scholar
  6. 6.
    Tseluikin, V.N., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p. 1040.CrossRefGoogle Scholar
  7. 7.
    Ranganatha, S., Venkatesha, T.V., Vathsala, K., and Punith Kumar, M.K., Surf. Coat. Technol., 2012, vol. 208, p. 64.CrossRefGoogle Scholar
  8. 8.
    Nemes, P.I., Lekka, M., Fedrizzi, L., Muresan, L.M., Surf. Coat. Technol., 2014, vol. 252, p. 102.CrossRefGoogle Scholar
  9. 9.
    Sajjadnejad, M., Mozafari, A., Omidvar, H., and Javanbakht, M., Appl. Surf. Sci., 2014, vol. 300, p. 1.CrossRefGoogle Scholar
  10. 10.
    Tseluikin, V.N. and Koreshkova, A.A., Russ. J. Appl. Chem., 2015, vol. 88, no. 2, p. 272.CrossRefGoogle Scholar
  11. 11.
    Sajjadnejad, M., Ghorbani, M., and Afshar, A., Ceram. Int., 2015, vol. 41, p. 217.CrossRefGoogle Scholar
  12. 12.
    Soroor Ghaziof and Wei Gao, J. Alloys Compd., 2015, vol. 622, p. 618.CrossRefGoogle Scholar
  13. 13.
    Kvasnikov, M.Yu., Pavlov, A.V., Silaeva, A.A., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p. 1031.CrossRefGoogle Scholar
  14. 14.
    Boshkov, N., Port. Electrochim. Acta 2017, vol. 35, p. 53.CrossRefGoogle Scholar
  15. 15.
    Rakov, E.G., Nanotrubki i fullereny (Nanotubes and Fullerenes), Moscow: Universitetskaya Kniga, Logos, 2006.Google Scholar
  16. 16.
    D’yachkov, P.N., Uglerodnye nanotrubki: stroenie, svoistva, primeneniya (Carbon Nanotubes: Structure, Properties, Applications), Moscow: Binom, 2006.Google Scholar
  17. 17.
    Chang, L.M., Chen, D., Liu, J.H., and Zhang, R.J., J. Alloys Compd., 2009, vol. 479, p. 489.CrossRefGoogle Scholar
  18. 18.
    Tao, S. and Li, D.Y., Nanotechnology, 2006, vol. 17, p. 65.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Engels Technological Institute, Gagarin Saratov State Technical UniversityEngelsRussia

Personalised recommendations