Advertisement

Impedancemetric Detection of Glucose Using a Biosensor Based on Screen-Printed Electrodes

  • S. E. TarasovEmail author
  • V. V. EmetsEmail author
  • A. L. Kluyev
  • V. N. Andreev
  • A. N. Reshetilov
INVESTIGATION METHODS FOR PHYSICOCHEMICAL SYSTEMS
  • 9 Downloads

Abstract

This work deals with the creation of an enzyme biosensor based on electrochemical impedance spectroscopy (EIS) and the possibility of applying EIS in the quantitative determination of glucose using the screen-printed electrodes modified by glucose oxidase.

Keywords:

glucose oxidase biosensors impedance spectroscopy electrodes produced by a matrix printing head 

Notes

REFERENCES

  1. 1.
    Peng, J., et al. Biosens. Bioelectron., 2011, vol. 28, p. 414.CrossRefGoogle Scholar
  2. 2.
    Wang, G., et al., Mikrochim. Acta, 2013, vol. 180, p. 161.CrossRefGoogle Scholar
  3. 3.
    Gregg, B.A., et al., Anal. Chem., 1990, vol. 62, p. 258.CrossRefGoogle Scholar
  4. 4.
    Heller, A., J. Phys. Chem., 1992, vol. 96, p. 3579.CrossRefGoogle Scholar
  5. 5.
    Turner, A.P.F., Karube, I., and Wilson, G.S., Biosensors, Fundamentals and Applications, Oxford: Oxford Univ. Press, 1987.CrossRefGoogle Scholar
  6. 6.
    Wang, J., Chem. Rev., 2008, vol. 108, p. 814.CrossRefGoogle Scholar
  7. 7.
    Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy: Theory, Experiment and Applications, Hoboken, New York: Wiley Int., 2005.CrossRefGoogle Scholar
  8. 8.
    Mansfeld, F., Electrochim. Acta, 2007, vol. 52, p. 7670.CrossRefGoogle Scholar
  9. 9.
    Daniels, J.S., Integrated Biosensor Array, Stanford, CA: Stanford Univ., 2010.Google Scholar
  10. 10.
    Gutorov, M.A., Emets, V.V., Klyuev, A.L., Andreev, V.N., and Reshetilov, A.N., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 4, p. 864.CrossRefGoogle Scholar
  11. 11.
    Kang, X., et al., Biosens. Bioelectron., 2009, vol. 25, p. 901.CrossRefGoogle Scholar
  12. 12.
    Deng, S., et al., Biosens. Bioelectron., 2009, vol. 25, p. 373.CrossRefGoogle Scholar
  13. 13.
    Shervedani, R.K., et al., Bioelectrochemistry, 2006, vol. 69, p. 201.CrossRefGoogle Scholar
  14. 14.
    Domínguez Renedo, O., et al., Anal. Chim. Acta, 2007, vol. 589, no. 2, p. 255.CrossRefGoogle Scholar
  15. 15.
    Zeng, X., et al., Biosens. Bioelectron., 2009, vol. 24, no. 9, p. 2898.CrossRefGoogle Scholar
  16. 16.
    Bohmhamnlel, K., et al., Thermochim. Acta, 1993, vol. 217, p. 1.CrossRefGoogle Scholar
  17. 17.
    Ng, L.T., et al., J. Appl. Polym. Sci., 2001, vol. 79, no. 3, p. 466.CrossRefGoogle Scholar
  18. 18.
    Tang, Y., et al., J. Appl. Electrochem., 2008, vol. 38, p. 1553.CrossRefGoogle Scholar
  19. 19.
    Alfonta, L., et al., Anal. Chem., 2000, vol. 72, p. 927.CrossRefGoogle Scholar
  20. 20.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: John Wiley and Sons, 2001.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of SciencesPushchinoPushchinoRussia
  2. 2.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of SciencesMoscowRussia

Personalised recommendations