Advertisement

Synthesis and Characterization of a Bis-Pyrazoline Derivative as Corrosion Inhibitor for A283 Carbon Steel in 1M HCl: Electrochemical, Surface, DFT and MD Simulation Studies

  • I. Selatnia
  • A. SidEmail author
  • M. Benahmed
  • O. Dammene debbih
  • T. Ozturk
  • N. Gherraf
PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • 30 Downloads

Abstract

The effect of a new synthesized bis-pyrazoline derivative namely: 5,5'-(1,4-phenylene) bis [1‑formyl-4,5-dihydro-3-phenyl-1H pyrazole] (Bis-Pyr) on carbon steel corrosion in 1M HCl was investigated using weight loss, potentiodynamic polarization and EIS measurement. DFT calculation and molecular dynamics simulation were used to confirm the experimental results. The results showed that inhibition efficiency of the (Bis-Pyr) compound increases with the increase of its concentration and acts as a mixed type inhibitor, e.i affecting both anodic and cathodic reactions. The adsorption of the compound on steel surface is both physical and chemical adsorptions and follows Langmuir isotherm. The surface morphology of the steel surface was carried out by scanning electron microscopy (SEM). The data obtained from theoretical and experimental studies were in reasonable agreement.

Keywords:

carbon steel corrosion bis-pyrazoline derivative SEM DFT 

Notes

ACKNOWLEDGMENTS

The authors express their sincere thanks to the directors of the laboratories (LCATM), (LSAME) of Larbi ben M’Hidi University, Oum El Bouaghi and the director of laboratory (LMBAA) of Tebessa University, Algeria for their support of this work. The help rendered by Doctor Paul MOSSET, Rennes-1 university luck now for spectral analysis was also gratefully knowledge.

REFERENCES

  1. 1.
    Ostovari, A., Hoseinieh, S.M., Peikari, M., et al., Corros. Sci., 2009, vol. 51, p. 1935.CrossRefGoogle Scholar
  2. 2.
    Arouji, S.E., Ismaili, K., Zerrouki, A., et al., Pharma Chem., 2015, vol. 7, no. 10, p. 23.Google Scholar
  3. 3.
    Daoud, D., Douadi, T., Hamani, H., et al., Corros. Sci., 2015, vol. 94, p. 21.CrossRefGoogle Scholar
  4. 4.
    Döner, A., Sahin, E.A., Kardas, G., and Serindag, O., Corros. Sci., 2013, vol. 66, p. 278.CrossRefGoogle Scholar
  5. 5.
    Obot, I.B., Umoren, S.A., Gasem, Z.M., et al., J. Ind. Eng. Chem., 2015, vol. 21, p. 1328.CrossRefGoogle Scholar
  6. 6.
    Su, W. and Iroh, J.O., Electrochim. Acta, 1999, vol. 44, p. 2173.CrossRefGoogle Scholar
  7. 7.
    Bouklah, M., Benchat, N., Hammouti, B., et al., Mater. Lett., 2006, vol. 60, p. 1901.CrossRefGoogle Scholar
  8. 8.
    Lebrini, M., Robert, F., Vezin, H., and Roos, C., Corros. Sci., 2010, vol. 52, p. 3367.CrossRefGoogle Scholar
  9. 9.
    Eddy, N.O., Momoh Yahaya, H., and Oguzie, E.E., RCS Adv., 2015, vol. 6, p. 203.Google Scholar
  10. 10.
    Dasami, P.M., Parameswari, K., and Chitra, S., Measurement, 2015, vol. 69, p. 195.CrossRefGoogle Scholar
  11. 11.
    Patel, P., Koregaokar, S., Shah, M., and Parekh, H., Farmaco, 1996, vol. 51, p. 59.Google Scholar
  12. 12.
    Baraldi, P., Manfredini, S., Romagnoli, R., et al., Nucleosides Nucleotides, 1998, vol. 17, p. 2165.CrossRefGoogle Scholar
  13. 13.
    Fathalla, O.A., Zaki, M.E., Swelam, S.A., et al., Acta Pol. Pharm., 2003, vol. 60, p. 51.Google Scholar
  14. 14.
    Hmamou, D.B., Salghi, R., Zarrouk, A., et al., J. Environ. Chem. Eng., 2015, vol. 3, p. 2031.CrossRefGoogle Scholar
  15. 15.
    Ouchrif, A., Zegmout, M., Hammouti, B., et al., Appl. Surf. Sci., 2005, vol. 252, p. 339.CrossRefGoogle Scholar
  16. 16.
    Abdallah, M. and El Naggar, M.M., Mater. Chem. Phys., 2001, vol. 71, p. 291.CrossRefGoogle Scholar
  17. 17.
    Tebbji, K., Aouniti, A., Benkaddour, M., et al., Prog. Org. Coat., 2005, vol. 54, p. 170.CrossRefGoogle Scholar
  18. 18.
    Obot, I.B., Kaya, S., Kaya, C., and Tuzun, B., Phys. E (Amsterdam, Neth.), 2016, vol. 80, p. 82.Google Scholar
  19. 19.
    Yadav, D.K., Maiti, B., and Quraishi, M.A., Corros. Sci., 2010, vol. 52, p. 3586.CrossRefGoogle Scholar
  20. 20.
    Issaadi, S., Douadi, T., and Chafaa, S., Appl. Surf. Sci., 2014, vol. 316, p. 582.CrossRefGoogle Scholar
  21. 21.
    Verma, C., Ebenso, E.E., Bahadur, I., et al., J. Mol. Liq., 2015, vol. 212, p. 209.CrossRefGoogle Scholar
  22. 22.
    Kaya, S., Tüzün, B., Kaya, C., and Obot, I.B., J. Taiwan Inst. Chem. Eng., 2016, vol. 58, p. 528.CrossRefGoogle Scholar
  23. 23.
    ASTM G 31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals, Philadelphia, PA: American Society for Testing and Materials, 1990.Google Scholar
  24. 24.
    Materials Studio, Revision 7.0., San Diego, CA: Accelrys, 2013.Google Scholar
  25. 25.
    Mohallem, J.R., Coura, T.O., Diniz, L.G., et al., J. Phys. Chem. A, 2008, vol. 112, p. 8896.CrossRefGoogle Scholar
  26. 26.
    Sun, H., J. Phys. Chem. B, 1998, vol. 102, p. 7338.CrossRefGoogle Scholar
  27. 27.
    Mi, H., Xiao, G., and Chen, X., Comput. Theor. Chem., 2015, vol. 1072, p. 7.CrossRefGoogle Scholar
  28. 28.
    Xie, S.W., Liu, Z., Han, G.C., et al., Comput. Theor. Chem., 2015, vol. 1063, p. 50.CrossRefGoogle Scholar
  29. 29.
    Madkour, L.H., Kaya, S., Kaya, C., and Lei, G., J. Taiwan Inst. Chem. Eng., 2016, vol. 68, p. 461.CrossRefGoogle Scholar
  30. 30.
    Xu, B., Liu, Y., Yin, X., et al., Corros. Sci., 2013, vol. 74, p. 206.CrossRefGoogle Scholar
  31. 31.
    Zarrok, H., Zarrouk, A., Hammouti, B., et al., Corros. Sci., 2012, vol. 64, p. 243.CrossRefGoogle Scholar
  32. 32.
    Behpour, M., Ghoreishi, S., Soltani, N., and Salavati Niasari, M., Corros. Sci., 2009, vol. 51, p. 1073.CrossRefGoogle Scholar
  33. 33.
    Solmaz, R., Corros. Sci., 2014, vol. 79, p. 169.CrossRefGoogle Scholar
  34. 34.
    Kharbach, Y., Haoudi, A., Skalli, M.K., et al., J. Mater. Environ. Sci., 2015, vol. 6, no. 10, p. 2906.Google Scholar
  35. 35.
    Xu, B., Gong, W., Zhang, K., et al., J. Taiwan Inst. Chem. Eng., 2015, vol. 51, p. 193.CrossRefGoogle Scholar
  36. 36.
    Tawfik, S.M., J. Mol. Liq., 2015, vol. 207, p. 185.CrossRefGoogle Scholar
  37. 37.
    Verma, C., Quraishi, M.A., and Singh, A., J. Mol. Liq., 2015, vol. 212, p. 804.CrossRefGoogle Scholar
  38. 38.
    Jafari, H. and Sayin, K., J. Taiwan Inst. Chem. Eng., 2015, vol. 56, p. 181.CrossRefGoogle Scholar
  39. 39.
    Yurt, A., Ulutas, S., and Dal, H., Appl. Surf. Sci., 2006, vol. 253, no. 2, p. 919.CrossRefGoogle Scholar
  40. 40.
    Li, X., Deng, S., and Fu, H., Corros. Sci., 2010, vol. 52, p. 2786.CrossRefGoogle Scholar
  41. 41.
    Umoren, S., Obot, B., Madhankumar, A., and Gasem, Z., Carbohydr. Polym., 2015, vol. 124, p. 280.CrossRefGoogle Scholar
  42. 42.
    Döner, A., Solmaz, R., Özcan, M., and Kardas, G., Corros. Sci., 2011, vol. 53, p. 2902.CrossRefGoogle Scholar
  43. 43.
    Zhang, J., Gong, X.L., Yu, H.H., and Du, M., Corros. Sci., 2011, vol. 53, p. 3324.CrossRefGoogle Scholar
  44. 44.
    Mert, B.D., Mert, M.E., Kardas, G., and Yazıcı, B., Corros. Sci., 2011, vol. 53, p. 426.CrossRefGoogle Scholar
  45. 45.
    Mert, B.D. and Yazıcı, B., Mater. Chem. Phys., 2011, vol. 125, p. 370.CrossRefGoogle Scholar
  46. 46.
    Ansari, K.R., Quraishi, M.A., and Singh, A., J. Ind. Eng. Chem., 2015, vol. 25, p. 89.CrossRefGoogle Scholar
  47. 47.
    Macdonald, J.R. and Johanson, W.B., Theory in Impedance Spectroscopy, New York: John Wiley and Sons, 1987.Google Scholar
  48. 48.
    Yadav, M., Sinha, R.R., Sarkar, T.K., et al., J. Mol. Liq., 2015, vol. 212, p. 686.CrossRefGoogle Scholar
  49. 49.
    Ahamad, I., Prasad, R., and Quraishi, M.A., Corros. Sci., 2010, vol. 52, p. 1472.CrossRefGoogle Scholar
  50. 50.
    Benahmed, M., Selatnia, I., Achouri, A., et al., Trans. Indian Inst. Met., 2015, vol. 68, no. 3, p. 393.CrossRefGoogle Scholar
  51. 51.
    Hamani, H., Douadi, T., Al Noaimi, M., et al., Corros. Sci., 2014, vol. 88, p. 234.CrossRefGoogle Scholar
  52. 52.
    Obot, I.B., Macdonald, D.D., and Gasem, Z.M., Corros. Sci., 2015, vol. 99, p. 1.CrossRefGoogle Scholar
  53. 53.
    Singh, A., Lin, Y., Quraishi, M.A., et al., Molecules, 2015, vol. 20, p. 15122.CrossRefGoogle Scholar
  54. 54.
    El Lateefa, H.M., Abu Diefa, A.M., and Abdel Rahman, J. Electroanal. Chem., 2015, vol. 743, p. 120.CrossRefGoogle Scholar
  55. 55.
    Gece, G., Corros. Sci., 2008, vol. 50, p. 2981.CrossRefGoogle Scholar
  56. 56.
    Xu, B., Ji, Y., Zhang, X., et al., J. Taiwan Inst. Chem. Eng., 2016, vol. 59, p. 526.CrossRefGoogle Scholar
  57. 57.
    Koopmans, T., Physica, 1993, vol. 1, p. 104.CrossRefGoogle Scholar
  58. 58.
    Pearson, R.G., J. Am. Chem. Soc., 1963, vol. 85, p. 3533.CrossRefGoogle Scholar
  59. 59.
    Lukovits, I., Kálmán, E., and Zucchi, F., Corrosion, 2001, vol. 57, p. 3.CrossRefGoogle Scholar
  60. 60.
    De Proft, F., Martin, J.M.L., and Geerlings, P., Chem. Phys. Lett., 1996, vol. 256, p. 400.CrossRefGoogle Scholar
  61. 61.
    Verma, C., Olasunkanmi, L.O., Obot, I.B., et al., RSC Adv., 2016, vol. 6, p. 15639.CrossRefGoogle Scholar
  62. 62.
    Zeng, J., Zhang, J., and Gong, X., J. Chem. Theory Comput., 2011, vol. 963, p. 110.CrossRefGoogle Scholar
  63. 63.
    Nnaji, N.J.N., Ujam, O.T., Ibisi, N.E., et al., J. Mol. Liq., 2017, vol. 230, p. 652.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. Selatnia
    • 1
  • A. Sid
    • 1
    Email author
  • M. Benahmed
    • 2
  • O. Dammene debbih
    • 1
  • T. Ozturk
    • 3
  • N. Gherraf
    • 4
  1. 1.Laboratory of Analytical Sciences, Matrials and Envirromental (LSAME). Material Sciences Departement. Larbi Ben M’Hidi UniversityOum El BouaghiAlgeria
  2. 2.Laboratory of Bioactif Molecules and Applications. Tebessa UniversityTebessaAlgeria
  3. 3.Department of Chemistry, Faculty of Science and Letters, Istanbul Technical UniversityMaslak, IstanbulTurkey
  4. 4.Laboratory des Ressources Naturelles et Aménagement des Milieux Sensibles, Larbi ben M’Hidi UniversityOum El BouaghiAlgeria

Personalised recommendations