Application of Accelerated Electrons for Polymer Modification and Preparation of Composite Materials

  • A. V. PonomarevEmail author
  • B. G. Ershov


Exposure to accelerated electrons makes it possible to change the properties of polymeric and composite materials on the surface and in a layer of a given depth. Ionization generates various reactive species, such as electrons, free radicals, ions, and excited molecules. These species can be used to initiate the formation of block and graft copolymers, latexes, and regular and irregular macromolecules and affect the functional properties of materials and their protective layers in a targeted fashion. Electron-beam technologies are being increasingly used in the design of improved and unique materials with desired properties of surface layers.


electron accelerator cross-linking graft polymerization copolymerization 



  1. 1.
    Ershov, B.G., Herald Russ. Acad. Sci., 2013, vol. 83, no. 5, p. 437.CrossRefGoogle Scholar
  2. 2.
    Chmielewski, A.G., Al-Sheikhly, M., Berejka, A.J., et al., Radiat. Phys. Chem., 2014, vol. 94, p. 147.CrossRefGoogle Scholar
  3. 3.
    Woods, R.J. and Pikaev, A.K., Applied Radiation Chemistry: Radiation Processing, New York: John Wiley and Sons, 1994.Google Scholar
  4. 4.
    Chmielewski, A.G. and Haji-Saeid, M., Radiat. Phys. Chem., 2004, vol. 71, p. 17.CrossRefGoogle Scholar
  5. 5.
    Chmielewski, A.G. and Szołucha, M.M., Radiat. Phys. Chem., 2016, vol. 124, p. 235.CrossRefGoogle Scholar
  6. 6.
    Berejka, A.J., Cleland, M.R., and Walo, M., Radiat. Phys. Chem., 2014, vol. 94, p. 141.CrossRefGoogle Scholar
  7. 7.
    Ponomarev, A.V. and Ershov, B.G., Usp. Khim., 2012, vol. 81, no. 10, p. 918.CrossRefGoogle Scholar
  8. 8.
    Ponomarev, A.V. and Ershov, B.G., Molecules, 2014, vol. 19, p. 16 877.CrossRefGoogle Scholar
  9. 9.
    Kuila, T., Bose, S., Mishra, A.K., et al., Prog. Mater. Sci., 2012, vol. 57, p. 1061.CrossRefGoogle Scholar
  10. 10.
    Călinescu, I., Martin, D., Ighigeanu, D., et al., Cent. Eur. J. Chem., 2014, vol. 12, p. 774.CrossRefGoogle Scholar
  11. 11.
    Coqueret, X., Krzeminski, M., Ponsaud, P., and Defoort, B., Radiat. Phys. Chem., 2009, vol. 78, p. 557.CrossRefGoogle Scholar
  12. 12.
    Szebényi, G., Romhány, G., Vajna, B., and Czvikovszky, T., Radiat. Phys. Chem., 2012, vol. 81, p. 1383.CrossRefGoogle Scholar
  13. 13.
    Ponomarev, A.V. and Ershov, B.G., IAEA Radiation Technology Reports, 2017, no. 5.Google Scholar
  14. 14.
    Albert, A., Barnett, A.O., Thomassen, M.S., et al., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 22 203–22 212.CrossRefGoogle Scholar
  15. 15.
    Sabatino, M.A., Bulone, D., Veres, M., et al., Polymer, 2013, vol. 54, p. 54.CrossRefGoogle Scholar
  16. 16.
    Kim, H.J., Park, S.H., and Park, H.J., Sens. Lett., 2010, vol. 9, p. 59.CrossRefGoogle Scholar
  17. 17.
    Kim, Y.S., Seo, K.S., and Choi, S.H., Radiat. Phys. Chem., 2016, vol. 118, p. 35.CrossRefGoogle Scholar
  18. 18.
    Sproll, V., Nagy, G., Gasser, U., et al., Radiat. Phys. Chem., 2016, vol. 118, p. 120.CrossRefGoogle Scholar
  19. 19.
    Herer, A., Galloway, R.A., Cleland, M.R., et al., Radiat. Phys. Chem., 2009, vol. 78, p. 531.CrossRefGoogle Scholar
  20. 20.
    Ponomarev, A.V., Radiat. Phys. Chem., 2016, vol. 118, p. 138.CrossRefGoogle Scholar
  21. 21.
    Palm, A., Smith, J., Driscoll, M., et al., Radiat. Phys. Chem., 2016, vol. 124, p. 164.CrossRefGoogle Scholar
  22. 22.
    Soni, K.S., Desale, S.S., and Bronich, T.K., J. Controlled Release, 2016, vol. 240, p. 109.CrossRefGoogle Scholar
  23. 23.
    Seko, N., Ninh, N.T.Y., and Tamada, M., Radiat. Phys. Chem., 2010, vol. 79, p. 22.CrossRefGoogle Scholar
  24. 24.
    Auras, R., Harte, B., and Selke, S., Macromol. Biosci., 2004, vol. 4, p. 835.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations