Application of Accelerated Electrons for Polymer Modification and Preparation of Composite Materials
NANOSCALE AND NANOSTRUCTURED
MATERIALS AND COATINGS
First Online:
- 14 Downloads
Abstract
Exposure to accelerated electrons makes it possible to change the properties of polymeric and composite materials on the surface and in a layer of a given depth. Ionization generates various reactive species, such as electrons, free radicals, ions, and excited molecules. These species can be used to initiate the formation of block and graft copolymers, latexes, and regular and irregular macromolecules and affect the functional properties of materials and their protective layers in a targeted fashion. Electron-beam technologies are being increasingly used in the design of improved and unique materials with desired properties of surface layers.
Keywords:
electron accelerator cross-linking graft polymerization copolymerizationNotes
REFERENCES
- 1.Ershov, B.G., Herald Russ. Acad. Sci., 2013, vol. 83, no. 5, p. 437.CrossRefGoogle Scholar
- 2.Chmielewski, A.G., Al-Sheikhly, M., Berejka, A.J., et al., Radiat. Phys. Chem., 2014, vol. 94, p. 147.CrossRefGoogle Scholar
- 3.Woods, R.J. and Pikaev, A.K., Applied Radiation Chemistry: Radiation Processing, New York: John Wiley and Sons, 1994.Google Scholar
- 4.Chmielewski, A.G. and Haji-Saeid, M., Radiat. Phys. Chem., 2004, vol. 71, p. 17.CrossRefGoogle Scholar
- 5.Chmielewski, A.G. and Szołucha, M.M., Radiat. Phys. Chem., 2016, vol. 124, p. 235.CrossRefGoogle Scholar
- 6.Berejka, A.J., Cleland, M.R., and Walo, M., Radiat. Phys. Chem., 2014, vol. 94, p. 141.CrossRefGoogle Scholar
- 7.Ponomarev, A.V. and Ershov, B.G., Usp. Khim., 2012, vol. 81, no. 10, p. 918.CrossRefGoogle Scholar
- 8.Ponomarev, A.V. and Ershov, B.G., Molecules, 2014, vol. 19, p. 16 877.CrossRefGoogle Scholar
- 9.Kuila, T., Bose, S., Mishra, A.K., et al., Prog. Mater. Sci., 2012, vol. 57, p. 1061.CrossRefGoogle Scholar
- 10.Călinescu, I., Martin, D., Ighigeanu, D., et al., Cent. Eur. J. Chem., 2014, vol. 12, p. 774.CrossRefGoogle Scholar
- 11.Coqueret, X., Krzeminski, M., Ponsaud, P., and Defoort, B., Radiat. Phys. Chem., 2009, vol. 78, p. 557.CrossRefGoogle Scholar
- 12.Szebényi, G., Romhány, G., Vajna, B., and Czvikovszky, T., Radiat. Phys. Chem., 2012, vol. 81, p. 1383.CrossRefGoogle Scholar
- 13.Ponomarev, A.V. and Ershov, B.G., IAEA Radiation Technology Reports, 2017, no. 5.Google Scholar
- 14.Albert, A., Barnett, A.O., Thomassen, M.S., et al., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 22 203–22 212.CrossRefGoogle Scholar
- 15.Sabatino, M.A., Bulone, D., Veres, M., et al., Polymer, 2013, vol. 54, p. 54.CrossRefGoogle Scholar
- 16.Kim, H.J., Park, S.H., and Park, H.J., Sens. Lett., 2010, vol. 9, p. 59.CrossRefGoogle Scholar
- 17.Kim, Y.S., Seo, K.S., and Choi, S.H., Radiat. Phys. Chem., 2016, vol. 118, p. 35.CrossRefGoogle Scholar
- 18.Sproll, V., Nagy, G., Gasser, U., et al., Radiat. Phys. Chem., 2016, vol. 118, p. 120.CrossRefGoogle Scholar
- 19.Herer, A., Galloway, R.A., Cleland, M.R., et al., Radiat. Phys. Chem., 2009, vol. 78, p. 531.CrossRefGoogle Scholar
- 20.Ponomarev, A.V., Radiat. Phys. Chem., 2016, vol. 118, p. 138.CrossRefGoogle Scholar
- 21.Palm, A., Smith, J., Driscoll, M., et al., Radiat. Phys. Chem., 2016, vol. 124, p. 164.CrossRefGoogle Scholar
- 22.Soni, K.S., Desale, S.S., and Bronich, T.K., J. Controlled Release, 2016, vol. 240, p. 109.CrossRefGoogle Scholar
- 23.Seko, N., Ninh, N.T.Y., and Tamada, M., Radiat. Phys. Chem., 2010, vol. 79, p. 22.CrossRefGoogle Scholar
- 24.Auras, R., Harte, B., and Selke, S., Macromol. Biosci., 2004, vol. 4, p. 835.CrossRefGoogle Scholar
Copyright information
© Pleiades Publishing, Ltd. 2018