Excellent Anti-Corrosive Composite Coating Containing Iron Oxide on AZ31B Mg Alloy

  • Sung-Nam PakEmail author
  • Kyong-Sik Ju
  • Chol-Yong Yun
  • Man-Ho Kim
  • Myong-Son Ko
  • Sok-Jin Ryang
  • Chol-Jin Kim
  • Ju-Hyok U
  • Kyong-Song Pak


To improve the corrosion resistance of Mg alloys, an excellent anti-corrosive composite coating containing iron oxide was prepared on AZ31B Mg alloy by dipping method. Micro-arc oxidation (MAO) treated Mg alloys were modified by phytic acid/3-aminopropyltrimethoxysilane hybrid and ferrous sulfate heptahydrate/stearic acid solution in sequence. The surface morphology feature, composition and structure, and functional groups were examined by SEM, EDX, XPS, and FT-IR, respectively. Corrosion resistance of the composite coating was evaluated by electrochemical tests in 3.5% NaCl solution. The results confirmed that the as-fabricated composite coating improves corrosion resistance by about two or four orders of magnitude, compared with the single MAO coating and Mg alloy substrate. The surface of the composite coating, which is containing iron oxide with a flower-like network structure in nanoscale, represents an excellent sealing effect for micro-defects of the MAO coating, effectively restricting the penetration of a corrosive medium into the Mg substrate.


Mg alloy micro-arc oxidation iron oxide corrosion resistance 



This work was supported by National Natural Science Foundation of China (no. 51571076), and Open Project of State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology (no. HCK201716).


  1. 1.
    Soliman, H. and Hamdy, A.S., Surf. Eng., 2017, vol. 33, p. 767.CrossRefGoogle Scholar
  2. 2.
    Gupta, R. K. K., Mensah-Darkwa, K., et al., Trans. Nonferrous Met. Soc. China, 2013, vol. 23, p. 1237.CrossRefGoogle Scholar
  3. 3.
    Ming, S. and Yerokhin, A., et al., Plasma Processes Polym., 2016, vol. 13, p. 266.CrossRefGoogle Scholar
  4. 4.
    Stojadinović, S., Vasilić, R., and Perić, M., RSC Adv., 2014, vol. 4, p. 25759.CrossRefGoogle Scholar
  5. 5.
    Wang, S.-Y. and Xia, Y.-P., Trans. Nonferrous Met. Soc. China, 2013, vol. 23, p. 412.CrossRefGoogle Scholar
  6. 6.
    Wang, S.-Y., Xia, Y.-P., Liu, L., and Naichao, S., Ceram. Int., 2014, vol. 40, p. 93.CrossRefGoogle Scholar
  7. 7.
    Pak, S.-N., Yao, Z.P., Ju, K.-S., et al., Vacuum, 2018, vol. 151, p. 8.CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Yu, H.J., Chen, C.Z., and Zhao, Z.H., Mater. Des., 2015, vol. 85, p. 640.CrossRefGoogle Scholar
  9. 9.
    Wang, Y.Q., Deng, Y.Z., Shao, Y.W., and Wang, F.H., Surf. Eng., 2014, vol. 30, p. 31.CrossRefGoogle Scholar
  10. 10.
    Sankara Narayanan, T.S.N., Park, I.S., and Lee, M.H., Prog. Mater. Sci., 2014, vol. 60, p. 1.CrossRefGoogle Scholar
  11. 11.
    Ivanou, D.K., Starykevich, M., Lisenkov, A.D., et al., Corros. Sci., 2013, vol. 73, p. 300.CrossRefGoogle Scholar
  12. 12.
    Cui, X.-J., Lin, X.-Z., Liu, C.-H., Yang, R.-S., Zheng, X.-W., and Gong, M., Corros. Sci., 2015, vol. 90, p. 402.CrossRefGoogle Scholar
  13. 13.
    Lin, X., Tan, L., Wan, P., et al., Surf. Coat. Technol., 2013, vol. 232, p. 899.CrossRefGoogle Scholar
  14. 14.
    Chen, M.-A., Ou, Y.-C., Yu, C.-Y., Xiao, C., and Liu, S.-Y., Surf. Eng., 2016, vol. 32, p. 38.CrossRefGoogle Scholar
  15. 15.
    Pan, F., Yang, X., and Zhang, D., Appl. Surf. Sci., 2009, vol. 255, p. 8363.CrossRefGoogle Scholar
  16. 16.
    Zhang, R.F., Zhang, S.F., and Duo, S.W., Appl. Surf. Sci., 2009, vol. 255, p. 7893.CrossRefGoogle Scholar
  17. 17.
    Ezhil Vizhi, M., Vanithakumari, S.C., George, R.P., et al., Surf. Eng., 2016, vol. 32, p. 139.CrossRefGoogle Scholar
  18. 18.
    Pak, S.-N., Jiang, Z.H., Yao, Z.P., et al., Surf. Coat. Technol., 2017, vol. 325, p. 579.CrossRefGoogle Scholar
  19. 19.
    Wang, D., Zhang, G., Zhou, L., et al., Langmuir, 2017, vol. 33, p. 7007.CrossRefGoogle Scholar
  20. 20.
    Luo, F., Chen, Z., Mallavarapu, M., and Ravendra, N., Chem. Eng. J., 2016, vol. 294, p. 290.CrossRefGoogle Scholar
  21. 21.
    Luo, X., Liu, C., Yuan, J., et al., ACS Sustainable Chem. Eng., 2017, vol. 5, p. 6539.CrossRefGoogle Scholar
  22. 22.
    Gao, X., Lu, K., Xu, L., et al., Nanoscale, 2016, vol. 8, p. 1555.CrossRefGoogle Scholar
  23. 23.
    Pan, C.J., Yu, H., Wang, Y.N., et al., Mater. Sci. Eng., C, 2016, vol. 67, p. 132.CrossRefGoogle Scholar
  24. 24.
    Cao, H., Li, J., Shen, Y., et al., Appl. Surf. Sci., 2014, vol. 301, p. 244.CrossRefGoogle Scholar
  25. 25.
    Prasad, C., Karlapudi, S., Venkateswarlu, P., et al., J. Mol. Liq., 2017, vol. 240, p. 322.CrossRefGoogle Scholar
  26. 26.
    Chang, Q., Zhu, L., Yu, C., et al., J. Lumin., 2008, vol. 128, p. 1890.CrossRefGoogle Scholar
  27. 27.
    Dong, F., Peter, G.K., Sun, X., et al., Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 18523–18529.CrossRefGoogle Scholar
  28. 28.
    Shen, N., Xiang, X., She, X., et al., Appl. Surf. Sci., 2012, vol. 259, p. 306.CrossRefGoogle Scholar
  29. 29.
    Ju, J.-M., Wang, G., and Sim, K.-H., J. Alloys Compd., 2017, vol. 704, p. 585.CrossRefGoogle Scholar
  30. 30.
    Chen, H., Lv, G.H., Zhang, G.L., et al., Surf. Coat. Technol., 2010, vol. 205, p. S32.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Sung-Nam Pak
    • 1
    • 2
    Email author
  • Kyong-Sik Ju
    • 3
  • Chol-Yong Yun
    • 4
  • Man-Ho Kim
    • 1
  • Myong-Son Ko
    • 1
  • Sok-Jin Ryang
    • 1
  • Chol-Jin Kim
    • 1
  • Ju-Hyok U
    • 4
  • Kyong-Song Pak
    • 4
  1. 1.Department of Energy Science, Kim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea
  2. 2.State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of TechnologyHarbinChina
  3. 3.Institute of Advanced Science, Kim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea
  4. 4.Kimchaek University of TechnologyPyongyangDemocratic People’s Republic of Korea

Personalised recommendations