The Composition and Physicochemical Properties of PbO2–TiO2 Composite Materials Deposited from Colloid Electrolytes

  • V. A. KnyshEmail author
  • T. V. Luk’anenko
  • P. Yu. Demchenko
  • R. Ye. Gladyshevskii
  • A. B. VelichenkoEmail author


The effect of the deposition conditions from colloid electrolytes on the chemical and phase composition, texture and electrocatalytic activity of PbO2–TiO2 composite materials was studied. The composition of the composites depends on the electrolysis regimes, the charge of the dispersed phase particles and the electrode, as well as the precipitation rate of lead dioxide, and the concentration of the components in the solution. By varying the electrolysis regimes and the composition of the electrolyte, composites with a TiO2 content of up to 27 wt % can be obtained. The phase composition and texture of the resulting composites are determined by the electrolysis regimes and the composition of the electrolytes used. In addition, the presence of TiO2 particles in the electrolyte leads, as a rule, to a decrease in crystal size and an increase in the content of α-phase of lead dioxide in the precipitate. Introduction of valve metal oxide particles into the lead dioxide materials generally results in an increase in OER overvoltage and in the rate of p-nitroaniline oxidative degradation due increasing the number of oxygen-bound particles firmly bound to the electrode surface and the parallel flow of photocatalytic processes at TiO2 centers, providing additional quantity of oxygen-containing oxidants of radical and peroxide nature. The use of composite materials as an active and transition layer of low-wearing anodes makes it possible to obtain electrodes with a long service lifetime.


colloid methanesulfonate electrolytes PbO2–TiO2 composites electrocatalysis anodes operation life 



  1. 1.
    Casellato, U., Cattarin, S., and Musiani, M., Electrochim. Acta, 2003, vol. 48, no. 10, pp. 3991–3998.CrossRefGoogle Scholar
  2. 2.
    Cattarin, S. and Musiani, M., Electrochim. Acta, 2006, vol. 52, no. 4, pp. 1339–1348.CrossRefGoogle Scholar
  3. 3.
    Cattarin, S., Frateur, I., Guerriero, P., et al., Electrochim. Acta, 2000, vol. 45, no. 9, pp. 2279–2288.CrossRefGoogle Scholar
  4. 4.
    Velichenko, A.B., Knysh, V.A., Luk’yanenko, T.V., et al., Mater. Chem. Phys., 2012, vol. 131, pp. 686–693.CrossRefGoogle Scholar
  5. 5.
    Velichenko, A., Knysh, V., Luk’yanenko, T., et al., Chem. Chem. Technol., 2012, vol. 6, pp. 123–133.Google Scholar
  6. 6.
    Velichenko, A.B., Knysh, V.A., Luk’yanenko, T.V., et al., Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 3, pp. 327–332.CrossRefGoogle Scholar
  7. 7.
    Amadelli, R., Samiolo, L., Velichenko, A.B., et al., Electrochim. Acta, 2009, vol. 54, no. 22, pp. 5239–5245.CrossRefGoogle Scholar
  8. 8.
    Velichenko, A.B., Amadelli, R., Knysh, V.A., et al., J. Electroanal. Chem., 2009, vol. 632, pp. 192–196.CrossRefGoogle Scholar
  9. 9.
    Li, X., Pletcher, D., and Walsh, F.C., Chem. Soc. Rev., 2011, vol. 40, pp. 3879–3894.CrossRefGoogle Scholar
  10. 10.
    Pletcher, D., Zhou Hantao, Kear, G., et al., J. Power Sources, 2008, vol. 180, pp. 630–634.CrossRefGoogle Scholar
  11. 11.
    Knysh, V.A., Luk’yanenko, T.V., Nikolenko, N.V., et al., Bull. Dnipropetr. Univ. Ser. Chem., 2016, vol. 24, no. 10, pp. 20–26. doi 10.15421/081604CrossRefGoogle Scholar
  12. 12.
    Velichenko, A.B., Knysh, V.A., Luk’yanenko, T.V., et al., Teor. Eksp. Khim., 2016, vol. 52, no. 2, pp. 125–129.Google Scholar
  13. 13.
    Knysh, V., Luk’yanenko, T., Shmychkova, O., et al., J. Solid State Electrochem., 2017, vol. 21, pp. 537–544.CrossRefGoogle Scholar
  14. 14.
    Campbell, S.A. and Peter, L.M., J. Electroanal. Chem., 1991, vol. 306, nos. 1–2, pp. 185–194.CrossRefGoogle Scholar
  15. 15.
    Velichenko, A.B., Amadelli, R., Gruzdeva, E.V., et al., J. Power Sources, 2009, vol. 191, pp. 103–110.CrossRefGoogle Scholar
  16. 16.
    Shmychkova, O.B., Luk’yanenko, T.V., Velichenko, A.B., et al., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, pp. 593–599.CrossRefGoogle Scholar
  17. 17.
    Shmychkova, O., Luk’yanenko, T., Piletska, A., et al., J. Electroanal. Chem., 2015, vol. 746, pp. 57–61.CrossRefGoogle Scholar
  18. 18.
    Shmychkova, O., Luk’yanenko, T., Velichenko, A., et al., J. Electroanal. Chem., 2013, vol. 706, pp. 86–92.CrossRefGoogle Scholar
  19. 19.
    Shmychkova, O., Luk’yanenko, T., Amadelli, R., et al., J. Electroanal. Chem., 2014, vol. 196, pp. 717–718.Google Scholar
  20. 20.
    Low, C.T.J., Pletcher, D., and Walsh, F.C., Electrochem. Commun., 2009, vol. 11, pp. 1301–1304.CrossRefGoogle Scholar
  21. 21.
    Amadelli, R., Maldotti, A., Velichenko, A.B., et al., J. Electroanal. Chem., 2002, vol. 534, pp. 1–12.CrossRefGoogle Scholar
  22. 22.
    Pavlov, D. and Monahov, B., J. Electrochem. Soc., 1998, vol. 45, pp. 70–77.CrossRefGoogle Scholar
  23. 23.
    Monahov, B., Pavlov, D., and Petrov, D., J. Power Sources, 2000, vol. 85, pp. 59–62.CrossRefGoogle Scholar
  24. 24.
    Pavlov, D. and Monahov, B., J. Electrochem. Soc., 1996, vol. 143, pp. 3616–3629.CrossRefGoogle Scholar
  25. 25.
    Pech, D., Brousse, T., Belanger, D., et al., Electrochim. Acta, 2009, vol. 54, pp. 7382–7388.CrossRefGoogle Scholar
  26. 26.
    Trassatti, S. and Lodi, G., Electrodes of Conductive Metallic Oxide, Amsterdam, Oxford, New York: Elsevier, 1981, part B, pp. 521–626.Google Scholar
  27. 27.
    Johnson, D.C., Feng, J., and Houk, L.L., Electrochim. Acta, 2000, vol. 46, pp. 323–330.CrossRefGoogle Scholar
  28. 28.
    Kawagoe, K.T. and Johnson, D.C., J. Electrochem. Soc., 1994, vol. 141, pp. 3404–3409.CrossRefGoogle Scholar
  29. 29.
    Liu, Y. and Liu, H., Electrochim. Acta, 2008, vol. 53, pp. 5077–5083.CrossRefGoogle Scholar
  30. 30.
    Panizza, M. and Cerisola, G., Chem. Rev., 2009, vol. 109, pp. 6541–6569.CrossRefGoogle Scholar
  31. 31.
    Chaplin, B.P., Environ. Sci.: Processes Impacts, 2014, vol. 16, pp. 1182–1203.Google Scholar
  32. 32.
    Borras, C., Laredo, T., and Scharifker, B.R., Electrochim. Acta, 2003, vol. 48, pp. 2775–2780.CrossRefGoogle Scholar
  33. 33.
    Amadelli, R., Samiolo, L., De Battisti, A., et al., J. Electrochem. Soc., 2011, vol. 158, pp. 87–92.CrossRefGoogle Scholar
  34. 34.
    Shmychkova, O., Luk’yanenko, T., and Yakubenko, A., et al., Appl. Catal., B, 2015, vol. 162, p. 346–351.CrossRefGoogle Scholar
  35. 35.
    Guoting Li, Jiuhui Qu, Xiwang Zhang, et al., Water Res., 2006, vol. 40, no. 4, pp. 213–220.CrossRefGoogle Scholar
  36. 36.
    Kasian, O.I., Luk’yanenko, T.V., and Velichenko, A.B., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 5, pp. 559–566.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Knysh
    • 1
    Email author
  • T. V. Luk’anenko
    • 1
  • P. Yu. Demchenko
    • 2
  • R. Ye. Gladyshevskii
    • 2
  • A. B. Velichenko
    • 1
    Email author
  1. 1.Ukrainian State University of Chemical TechnologyDneprUkraine
  2. 2.Ivan Franko Lviv National UniversityLvivUkraine

Personalised recommendations