Advertisement

Structure, Mechanical Properties, and Oxidation Resistance of ZrB2, ZrSiB, and ZrSiB/SiBC Coatings

  • F. V. Kiryukhantsev-KorneevEmail author
  • M. V. Lemesheva
  • N. V. Shvyndina
  • E. A. Levashov
  • A. Yu. Potanin
NEW SUBSTANCES, MATERIALS, AND COATINGS
  • 20 Downloads

Abstract

ZrB2, ZrSiB single-layer coatings, and ZrSiB/SiBC multilayer coatings have been fabricated by magnetron sputtering. The coating structure is studied by X-ray powder diffraction analysis, scanning electron microscopy, and glow-discharge optical emission spectroscopy. The mechanical properties of the coatings are identified by nanoindentation. The oxidation resistance and thermal stability of the coatings are studied in the temperature range of 600–1200°C. Doping the ZrB2 single-layer coatings with silicon reduces the grain size of the hexagonal ZrB2 phase from 8 to 2 nm. Application of silicon-containing layers results in complete amorphization of the structure of ZrSiB/SiBC multilayer coatings. The ZrB2 coatings are found to possess the best mechanical properties: hardness of 37 GPa, Young’s modulus of 400 GPa, and elastic recovery of 73%. The ZrSiB coatings are characterized by the highest oxidation resistance: they resist oxidation at temperatures up to 1500°C due to the formation of a protective SiO2-based film on their surface.

Keywords:

ZrB2 Zr–Si–B, Zr–Si–B/Si–B–C, and Zr–Al–Si–B coatings single- and multilayer thin films, zirconium diboride doping with silicon SHS hot pressing magnetron sputtering hardness oxidation resistance 

Notes

ACKNOWLEDGMENTS

We are grateful to T.B. Sagalova and A.V. Bondarev for their assistance in conducting XRD analysis and nanoindentation measurements.

This work was supported by the Russian Foundation for Basic Research, project no. 18-08-00269.

REFERENCES

  1. 1.
    Sonber, J.K., et al., Int. J. Refract. Met. Hard Mater., 2011, vol. 29, p. 21.CrossRefGoogle Scholar
  2. 2.
    Saunders, T., et al., J. Alloys Compd., 2015, vol. 653, pp. 629–635.CrossRefGoogle Scholar
  3. 3.
    Wang Tie-Gang, et al., J. Mater. Sci. Technol., 2012, vol. 28, p. 981.CrossRefGoogle Scholar
  4. 4.
    Tului, M., et al., Surf. Coat. Technol., 2002, vol. 151, p. 483.CrossRefGoogle Scholar
  5. 5.
    Wanga Zhong, et al., Ceram. Int., 2015, vol. l41, p. 14 868.Google Scholar
  6. 6.
    Yang Xiang, et al., Vacuum, 2013, vol. 96, p. 63.CrossRefGoogle Scholar
  7. 7.
    Dong, Z.H., et al., Mater. Lett., 2015, vol. 148, p. 76.CrossRefGoogle Scholar
  8. 8.
    Kaptay, C. and Kuznetsov, S.A., Plasmas Ions, 1999, vol. 2, pp. 45–56.CrossRefGoogle Scholar
  9. 9.
    Verkhoturov, A.D., et al., Surf. Eng. Appl. Electrochem., 2007, vol. 43, no. 6, pp. 415–424.CrossRefGoogle Scholar
  10. 10.
    Verkhoturov, A.D., et al., Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 2, pp. 180–185.CrossRefGoogle Scholar
  11. 11.
    Sung, J., et al., J. Appl. Phys., 2002, vol. 91, pp. 3904–3911.CrossRefGoogle Scholar
  12. 12.
    Ming’e, W., et al., Rare Met. Mater. Eng., 2016, vol. 45, pp. 3080–3084.CrossRefGoogle Scholar
  13. 13.
    Chu, C.W., et al., Thin Sold Films, 2009, vol. 517, pp. 5197–5201.CrossRefGoogle Scholar
  14. 14.
    Lawal, J., et al., Surf. Coat. Technol., 2017, vol. 310, pp. 59–69.CrossRefGoogle Scholar
  15. 15.
    Kiryukhantsev-Korneev, F.V., et al., Russ. J. Non-Ferrous Met., 2011, vol. 52, no. 3, pp. 311–318.CrossRefGoogle Scholar
  16. 16.
    Jian Wu, et al., Surf. Coat. Technol., 2017, vol. 315, pp. 258–267.CrossRefGoogle Scholar
  17. 17.
    Kiryukhantsev-Korneev, Ph.V., et al., Appl. Surf. Sci., 2014, vol. 314, pp. 104–111.CrossRefGoogle Scholar
  18. 18.
    Kiryukhantsev-Korneev, Ph.V., et al., Tribol. Lett., 2016, vol. 63, p. 44.CrossRefGoogle Scholar
  19. 19.
    Audronis, M., et al., Plasma Processes Polym., 2007, vol. 4, pp. 687–692.CrossRefGoogle Scholar
  20. 20.
    Vančo, M., et al., Procedia Eng., 2016, vol. 136, pp. 341–345.CrossRefGoogle Scholar
  21. 21.
    Shtansky, D.V., et al., Surf. Coat. Technol., 2011, vol. 206, pp. 1188–1195.CrossRefGoogle Scholar
  22. 22.
    Wenbin, F., et al., Rare Met. Mater. Eng., 2016, vol. 45, pp. 2543–2548.CrossRefGoogle Scholar
  23. 23.
    Shtansky, D.V., et al., Int. J. Refract. Met. Hard Mater., 2010, vol. 28, pp. 32–39.CrossRefGoogle Scholar
  24. 24.
    Du-Cheng Tsai, J. Alloys Compd., 2015, vol. 647, p. 179.CrossRefGoogle Scholar
  25. 25.
    Lin, C.H., et al., Surf. Coat. Technol., 2007, vol. 201, pp. 6304–6308.CrossRefGoogle Scholar
  26. 26.
    Mitterer, C., et al., Surf. Coat. Technol., 1992, vols. 54–55, pp. 329–334.CrossRefGoogle Scholar
  27. 27.
    Tie-Gang Wang, et al., J. Mater. Sci. Technol., 2012, vol. 28, pp. 981–991.CrossRefGoogle Scholar
  28. 28.
    http://porto.polito.it/2599760/1/PhD_Thesis_Padovano_PORTO.pdf.Google Scholar
  29. 29.
    Grančič, B., et al., Surf. Coat. Technol., 2014, vol. 240, pp. 48–54.CrossRefGoogle Scholar
  30. 30.
    Fabrizi, A., et al., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, pp. 452–459.CrossRefGoogle Scholar
  31. 31.
    Kiryukhantsev-Korneev, Ph.V., et al., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 5, pp. 794–802.CrossRefGoogle Scholar
  32. 32.
    Kiryukhantsev-Korneev Ph.V. et al. Glass Physics and Chemistry, 2011, Vol. 37, No. 4, pp. 411–417.Google Scholar
  33. 33.
    Zeman, P., et al., Ceram. Int., 2016, vol. 42, pp. 4853–4859.CrossRefGoogle Scholar
  34. 34.
    Xi-Yuan Yao, et al., Corros. Sci., 2012, vol. 57, pp. 148–153.CrossRefGoogle Scholar
  35. 35.
    Bae, K.-E., et al., Surf. Coat. Technol., 2015, vol. 276, pp. 55–58.CrossRefGoogle Scholar
  36. 36.
    Kiryukhantsev-Korneev, Ph.V., et al., Russ. J. Non-Ferrous Met., 2015, vol. 56, no. 5, pp. 540–547.CrossRefGoogle Scholar
  37. 37.
    Pogozhev, Yu.S., et al., Ceram. Int., 2016, vol. 42, pp. 16 758–16 765.CrossRefGoogle Scholar
  38. 38.
    Kiryukhantsev-Korneev, Ph.V., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 5, pp. 585–590.CrossRefGoogle Scholar
  39. 39.
    Levashov, E.A., et al., Russ. Metall. (Engl. Transl.), 2010, no. 10, pp. 917–935.Google Scholar
  40. 40.
    Samuelsson, M., et al., Thin Solid Films, 2012, vol. 526, pp. 163–167.CrossRefGoogle Scholar
  41. 41.
    Musil, J., et al., Compr. Mater. Process., 2014, vol. 4, pp. 325–353.CrossRefGoogle Scholar
  42. 42.
    Choi, H.S., et al., Surf. Coat. Technol., 2007, vol. 202, pp. 982–986.CrossRefGoogle Scholar
  43. 43.
    Kiryukhantsev-Korneev, Ph.V., et al., Thin Solid Films, 2009, vol. 517, pp. 2675–2680.CrossRefGoogle Scholar
  44. 44.
    Goncharov, A.A., Pis’ma Zh. Tekh. Fiz., 2006, vol. 76, no. 10, pp. 87–90.Google Scholar
  45. 45.
    López-Cartes, C., et al., Thin Solid Films, 2007, vol. 515, pp. 3590–3596.CrossRefGoogle Scholar
  46. 46.
    Deng, H., et al., Surf. Coat. Technol., 1995, vols. 76–77, pp. 609–614.CrossRefGoogle Scholar
  47. 47.
    Zhang, M., et al., Appl. Surf. Sci., 2015, vol. 357, pp. 1343–1354.CrossRefGoogle Scholar
  48. 48.
    Grančič, B., et al., Surf. Coat. Technol., 2014, vol. 240, pp. 48–54.CrossRefGoogle Scholar
  49. 49.
    http://rruff.info/chem=Al,%20O/display=default/R110117.Google Scholar
  50. 50.
    http://stars.library.ucf.edu/cgi/viewcontent.cgi?article= 3788&context=etd.Google Scholar
  51. 51.
    http://rruff.info/chem=Zr,%20O/display=default/ R060078.Google Scholar
  52. 52.
    Cai, M., et al., J. Vac. Sci. Technol. A, 1994, vol. 12, pp. 1535–1541.CrossRefGoogle Scholar
  53. 53.
    http://rruff.info/chem=Si,%20C/display=default/R110106.Google Scholar
  54. 54.
    Aono, Y., et al., Precis. Eng., 2016, vol. 43, pp. 270–276.CrossRefGoogle Scholar
  55. 55.
    Oda, K., et al., J. Mater. Sci. Lett., 1990, vol. 9, pp. 1080–1082.CrossRefGoogle Scholar
  56. 56.
    Li, D.J., et al., Sci. China: Technol. Sci., 2010, vol. 53, pp. 772–775.CrossRefGoogle Scholar
  57. 57.
    Grancic, B., et al., Vacuum, 2005, vol. 80, pp. 174–177.CrossRefGoogle Scholar
  58. 58.
    Kiryukhantsev-Korneev, F.V., et al., Phys. Met. Metallogr., 2017, vol. 118, pp. 1136–1146.CrossRefGoogle Scholar
  59. 59.
    Choi, H.S., et al., Surf. Coat. Technol., 2007, vol. 202, pp. 982–986.CrossRefGoogle Scholar
  60. 60.
    Ge, F., et al., Vacuum, 2017, vol. 135, pp. 66–72.CrossRefGoogle Scholar
  61. 61.
    Malygin, G.A., et al., Fiz. Tverd. Tela, 2007, vol. 49, pp. 961–982. Malygin, G.A., Phys. Solid State, 2007, vol. 49, pp. 1013–1033.CrossRefGoogle Scholar
  62. 62.
    Chaliyawala, H., et al., Surf. Coat. Technol., 2016, vol. 288, pp. 95–104.CrossRefGoogle Scholar
  63. 63.
    Stewart, D.M., et al., Proc. SPIE, 2017, vol. 10 246, p. 102460Q. doi 10.1117/12.2266561Google Scholar
  64. 64.
    Shappirio, J.R., et al., Thin Solid Films, 1984, vol. 119, pp. 23–30.CrossRefGoogle Scholar
  65. 65.
    Daniel, R., et al., Surf. Coat. Technol., 2006, vol. 201, pp. 3368–3376.CrossRefGoogle Scholar
  66. 66.
    Li, B., Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 177–183.CrossRefGoogle Scholar
  67. 67.
    Kiryukhantsev-Korneev, Ph.V., et al., Corros. Sci., 2017, vol. 123, pp. 319–327.CrossRefGoogle Scholar
  68. 68.
    Liu Yu, et al., J. Alloys Compd., 2018, vol. 735, pp. 2247–2255.CrossRefGoogle Scholar
  69. 69.
    Pogozhev, Yu.S., et al., Ceram. Int., 2016, vol. 42, pp. 16 758–16 765.CrossRefGoogle Scholar
  70. 70.
    Kiryukhantsev-Korneev, Ph.V., et al., Russ. J. Non-Ferrous Met., 2014, vol. 55, no. 6, pp. 645–651.CrossRefGoogle Scholar
  71. 71.
    Broitman, E., et al., Scr. Mater., 2016, vol. 124, pp. 117–120.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • F. V. Kiryukhantsev-Korneev
    • 1
    Email author
  • M. V. Lemesheva
    • 1
  • N. V. Shvyndina
    • 1
  • E. A. Levashov
    • 1
  • A. Yu. Potanin
    • 1
  1. 1.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations