Advertisement

Solubilization and Photochemical Stability of Octa[(4′-Benzo-15-Crown-5)Oxy]-Phthalocyanines in Aqueous Micellar Solutions

  • N. F. GoldshlegerEmail author
  • V. Yu. Gak
  • I. P. Kalashnikova
  • V. E. BaulinEmail author
  • A. V. Ivanchikhina
  • V. A. Smirnov
  • A. A. Shiryaev
  • A. Yu. Tsivadze
MOLECULAR AND SUPRAMOLECULAR STRUCTURES AT THE INTERFACES
  • 20 Downloads

Abstract

Methods of absorption and fluorescence spectroscopy and, in some cases, small angle X-ray scattering, are used to study solubilization and supramolecular organization of octa[(4'-benzo-15-crown-5)-oxy]phthalocyanines (Pc), H2cr8Pc, and Mgcr8Pc in an aqueous medium in the presence of polyelectrolytes, sodium polystyrene sulfonate, and sodium carboxymethyl cellulose or their mixtures with anionic surfactants: sodium dodecyl benzene sulfonate and sodium deoxycholate. The obtained results indicate the appearance of a monomeric, fluorescent state of Mgc8Pc in the presence of sodium polystyrene sulfonate and at the further increase in its concentration with an increase in the solution ionic strength and addition of anionic sodium deoxycholate. In all cases, the monomeric state of Mgcr8Pc is confirmed by the data of fluorescence spectroscopy. Photobleaching of Mgcr8Pc solubilized in the monomer form is observed in aqueous micellar solutions of sodium dodecylsulfate and sodium dodecyl benzene sulfonate. In the presence of PSS/NaCl, aqueous solutions of Mgcr8Pc were also studied using dynamic light scattering and small-angle X-ray scattering.

Keywords:

octa[(4'-benzo-15-crown-5)-oxy]phthalocyanines aggregation monomerization surfactants sodium polystyrene sulfonate sodium deoxycholate absorption and fluorescence spectroscopy photostability 

Notes

ACKNOWLEDGMENTS

The work was performed within the framework of the state assignment (topics no. 0081-2014-0015, no. 0090-2017-0024, and no. 0089-20-14-0036) and with partial financial support of the Russian Foundation for Basic Research (grant no. 15-03-03100).

Small-angle X-ray scattering measurements were carried out using the equipment of the Center of Collective Use of Physical Research Techniques of the A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences.

REFERENCES

  1. 1.
    Tsivadze, A.Yu., Usp. Khim., 2004, vol. 73, p. 6.Google Scholar
  2. 2.
    Logacheva, N.M., Baulin, V.E., Tsivadze, A.Yu., et al., Izv. Akad. Nauk, Ser. Khim., 2008, no. 7, p. 1439.Google Scholar
  3. 3.
    Pedersen, C.J., J. Am. Chem. Soc., 1970, vol. 92, p. 391.CrossRefGoogle Scholar
  4. 4.
    Gol’dshleger, N.F., Kalashnikova, I.P., Baulin, V.E., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, p. 471.CrossRefGoogle Scholar
  5. 5.
    Ovsyannikova, E.V., Gol’dshleger, N.F., Kurochkina, N.M., et al., Makrogeterotsikly, 2010, vol. 3, p. 125.Google Scholar
  6. 6.
    Goldshleger, N.F., Chernyak, A.V., Kalashnikova, I.P., et al., Russ. J. Gen. Chem., 2012, vol. 82, p. 927.CrossRefGoogle Scholar
  7. 7.
    Ovsyannikova, E.V., Kalashnikova, I.P., Baulin, V.E., et al., Zh. Obshch. Khim., 2012, vol. 82, p. 1893.Google Scholar
  8. 8.
    Goldshleger, N.F., Chernyak, A.V., Lobach, A.S., et al., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 212.CrossRefGoogle Scholar
  9. 9.
    Gol'dshleger, N.F., Lobach, A.S., Gak, V.Yu., et al., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 599.CrossRefGoogle Scholar
  10. 10.
    Tuite, E.M., Rose, D.B., Ennis, P.M., and Kelly, J.M., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 3681.CrossRefGoogle Scholar
  11. 11.
    Kassapidou, K., Jesse, W., Kuil, M., et al., Macromolecules, 1997, vol. 30, p. 2671.CrossRefGoogle Scholar
  12. 12.
    Mandal, S., Ghosh, S., Banik, D., et al., J. Phys. Chem. B, 2013, vol. 117, p. 13 795.CrossRefGoogle Scholar
  13. 13.
    Janczak, J., Polyhedron, 2010, vol. 29, p. 941.CrossRefGoogle Scholar
  14. 14.
    Chu, H.H., Yeo, Y.S., and Chuang, K.S., Polymer (Guildf.), 2007, vol. 48, p. 2298.CrossRefGoogle Scholar
  15. 15.
    Holmberg, K., Jönsson, B., Kronberg, B., and Lindman, B., Surfactants and Polymers in Aqueous Solution, Chichester: John Wiley and Sons, 2003.Google Scholar
  16. 16.
    Gol’dshleger, N.F., Baulin, V.E., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 135.CrossRefGoogle Scholar
  17. 17.
    Goldshleger N.F. Gak V.Yu, Lobach A.S., Kalashnikova I.P., Baulin V.E., Tsivadze A.Yu., Macroheterocycles, 2015, vol. 8, p. 343.Google Scholar
  18. 18.
    Ninomiya, R., Matsuoka, K., and Moroi, Y., Biochim. Biophys. Acta, 2003, vol. 1634, p. 116.CrossRefGoogle Scholar
  19. 19.
    Madenci, D. and Egelhaaf, S., Curr. Opin. Colloid Interface Sci., 2010, vol. 15, p. 109.CrossRefGoogle Scholar
  20. 20.
    Bogdanova, L.R., Gnezdilov, O.I., Idiyatullin, B.Z., et al., Colloid J., 2012, vol. 74, p. 1.CrossRefGoogle Scholar
  21. 21.
    Zhang, X.F., Xi, Q., and Zhao, J., J. Mater. Chem., 2010, vol. 20, p. 6726.CrossRefGoogle Scholar
  22. 22.
    Kuznetsova, N.A., Makarov, D.A., Yuzhakova, O.A., et al., J. Porphyrins Phthalocyanines, 2010, vol. 14, p. 968.CrossRefGoogle Scholar
  23. 23.
    Lastovoy, A.P., Kuznetsova, N.A., Slivka, L.K., and Makarova, E.A., J. Porphyrins Phthalocyanines, 2014, vol. 18, p. 457.CrossRefGoogle Scholar
  24. 24.
    Komissarov, A.N., Makarov, D.A., Yuzhakova, O.A., et al., Makrogeterotsikly, 2012, vol. 5, p. 169.Google Scholar
  25. 25.
    Slota, R. and Dyrda, G., Inorg. Chem., 2003, vol. 42, p. 5743.CrossRefGoogle Scholar
  26. 26.
    Lapkina, L.A., Gorbunova, Y.G., Gil, D.O., et al., J. Porphyrins Phthalocyanines, 2013, vol. 17, p. 564.CrossRefGoogle Scholar
  27. 27.
    Adamczyk, Z., Jachmska, B., Warszynski, P., and Wasilewska, M., Colloids Surf., A, 2009, vol. 343, p. 96.CrossRefGoogle Scholar
  28. 28.
    Wang, L. and Yu, H., Macromolecules, 1988, vol. 21, p. 3498.CrossRefGoogle Scholar
  29. 29.
    Ovsyannikova, E.V., Shiryaev, A.A., Kalashnikova, I.P., et al., Makrogeterotsikly, 2013, vol. 6, p. 274.Google Scholar
  30. 30.
    Small-Angle X-ray Scattering, Glatter, O. and Kratky, O., Eds., London: Academic Press, 1982.Google Scholar
  31. 31.
    Kotz, J., Kosmella, S., and Beitz, T., Prog. Polym. Sci., 2001, vol. 26, p. 1199.CrossRefGoogle Scholar
  32. 32.
    Birin, K.P., Gorbunova, Yu.G., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, p. 417.CrossRefGoogle Scholar
  33. 33.
    Das, S., Dey, J., Mukhim, T., and Ismail, K., J. Colloid Interface Sci., 2011, vol. 357, p. 434.CrossRefGoogle Scholar
  34. 34.
    Casper, J.V. and Meyer, T.J., J. Am. Chem. Soc., 1983, vol. 105, p. 5583.CrossRefGoogle Scholar
  35. 35.
    Sassoon, R.E., Gershuni, S., and Rabani, J., J. Phys. Chem., 1985, vol. 89, p. 1937.CrossRefGoogle Scholar
  36. 36.
    Eksperimental’nye metody khimii vysokikh energii (Experimental Methods for High Energy Chemistry), Mel’nikov, M.Ya., Ed., Moscow: Moscow State Univ., 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. F. Goldshleger
    • 1
    Email author
  • V. Yu. Gak
    • 1
  • I. P. Kalashnikova
    • 2
    • 3
  • V. E. Baulin
    • 2
    • 3
    Email author
  • A. V. Ivanchikhina
    • 1
  • V. A. Smirnov
    • 1
  • A. A. Shiryaev
    • 2
  • A. Yu. Tsivadze
    • 2
  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Physiologically Active Substances, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations