Oxidation Behavior of Nanostructured Ni-5Al Coating. A case Study on Monophase Coatings

  • G. GholamiEmail author
  • B. SaeediEmail author
  • A. Sabour RouhaghdamEmail author


Oxidation behavior of nanostructured Ni-5Al HVOF coatings was studied. For this purpose, isothermal oxidation of the free standing coatings was performed at 950°C. Lattice parameter determination technique was used for evaluating aluminum depletion to characterize oxidation behavior. The results showed that Al-depletion rate of the nanostructured coating was less than that of the conventional one, suggesting superior oxidation resistance of the nanostructured one. One reason, besides the one usually ascribed to grain size refinement and distribution of Nano oxides, lies in the coating integrity which imply the absence of any notable discontinuities including inter-splat oxides and porosities. On the other hand, vacuum heat treatment revealed that the nanostructured coating exhibited a phenomenon called diffusional creep, which is thought to be the most effective one in all densification mechanisms responsible for metallurgical consolidation processes. It was argued that this mechanism must also be active during oxidation in air and therefore can help retain the coating integrity, providing a sound metallic base for durable surface supply of aluminum throughout oxidation process. Therefore, coating integrity also is central to the formation of the protective α-Al2O3 subscale, as observed and argued in this paper for the nanostructured Ni-5Al coating.


high temperature oxidation mechanical milling lattice parameter Aluminum depletion Nano-oxides diffusional creep densification 



The authors would like to thank Dr. Shahverdi and Dr. Shahrabi for use of the laboratory facilities. We would also like to thank their laboratory management and their students whose suggestions and guidance were constructive.


  1. 1.
    Meier, G.H., Mater. Sci. Eng., A, 1989, vol. 120, p. 1.Google Scholar
  2. 2.
    Nicholls, J.R., JOM, 2000, vol. 52, p. 28.Google Scholar
  3. 3.
    Deshpande, S., Sampath, S., and Zhang, H., Surf. Coat. Technol., 2006, vol. 200, p. 5395.Google Scholar
  4. 4.
    Saeedi, B., Aghdam, A.S.R., and Gholami, G., Surf. Coat. Technol., 2015, vol. 276, p. 704.Google Scholar
  5. 5.
    Niu, Y., Wu, Y., and Gesmundo, F., Corros. Sci., 2006, vol. 48, p. 1.Google Scholar
  6. 6.
    Wu, Y. and Niu, Y., Corros. Sci., 2007, vol. 49, p. 1656.Google Scholar
  7. 7.
    Hindam, H.M. and Smeltzer, W.W., J. Electrochem. Soc., 1980, vol. 127, p. 1622.Google Scholar
  8. 8.
    Mahesh, R.A., Jayaganthan, R., and Prakash, S., J. Alloys Compd., 2008, vol. 460, p. 220.Google Scholar
  9. 9.
    Mahesh, R.A., Jayaganthan, R., and Prakash, S., J. Mater. Process. Technol., 2009, vol. 209, p. 3501.Google Scholar
  10. 10.
    Saladi, S., Menghani, J., and Prakash, S., J. Mater. Eng. Perform., 2014, vol. 23, p. 4394.Google Scholar
  11. 11.
    Fossati, A., Di Ferdinando, M., Lavacchi, A., Bardi, U., Giolli, C., and Scrivani, A., Surf. Coat. Technol., 2010, vol. 204, p. 3723.Google Scholar
  12. 12.
    Di Ferdinando, M., Fossati, A., Lavacchi, A., Bardi, U., Borgioli, F., Borri, C., Giolli, C., and Scrivani, A., Surf. Coat. Technol., 2010, vol. 204, p. 2499.Google Scholar
  13. 13.
    Pearson, W.B., A Handbook of Lattice Spacings and Structures of Metals and Alloys, vol. 4 of International Series of Monographs on Metal Physics and Physical Metallurgy, Elsevier, 2013, p. 377Google Scholar
  14. 14.
    Elsukov, E.P. and Protasov, A.V., Phys. Met. Metallogr., 2011, vol. 111, p. 503.Google Scholar
  15. 15.
    Rajkovic, V., Bozic, D., and Jovanovic, M.T., Mater. Des., 2010, vol. 31, p. 1962.Google Scholar
  16. 16.
    Rajkovic, V., Bozic, D., and Jovanovic, M.T., Mater. Charact., 2006, vol. 57, p. 94.Google Scholar
  17. 17.
    Suryanarayana, C. and Norton, M.G., X-Ray Diffraction: A Practical Approach, Springer Science & Business Media, 1998, pp. 153–166.Google Scholar
  18. 18.
    Mercier, D., Kaplin, C., Goodall, G., Kim, G., and Brochu, M., Surf. Coat. Technol., 2010, vol. 205, p. 2546.Google Scholar
  19. 19.
    Ajdelsztajn, L., Picas, J.A., Kim, G.E., Bastian, F.L., Schoenung, J., and Provenzano, V., Mater. Sci. Eng., A, 2002, vol. 338, p. 33.Google Scholar
  20. 20.
    Whittle, D.P. and Stringer, J., Philos. Trans. R. Soc., A, 1980, vol. 295, p. 309.Google Scholar
  21. 21.
    Tang, F., Ajdelsztajn, L., Kim, G.E., Provenzano, V., and Schoenung, J.M., Surf. Coat. Technol., 2004, vol. 185, p. 228.Google Scholar
  22. 22.
    Pragnell, W.M., Evans, H.E., Naumenko, D., and Quadakkers, W.J., Mater. High Temp., 2005, vol. 22, p. 561.Google Scholar
  23. 23.
    Saeedi, B., PhD Thesis, Tehran: Tarbiat Modares Univ., 2014.Google Scholar
  24. 24.
    Spitsberg, I. and More, K., Mater. Sci. Eng., A, 2006, vol. 417, p. 322.Google Scholar
  25. 25.
    Hwang, S.J. and Lee, J.H., Mater. Sci. Eng., A, 2005, vol. 405, p. 140.Google Scholar
  26. 26.
    Mackert, J.R., Metall. Trans. A, 1986, vol. 17, p. 746.Google Scholar
  27. 27.
    Yi, H.C., Guan, S.W., Smeltzer, W.W., and Petric, A., Acta Metall. Mater., 1994, vol. 42, p. 981.Google Scholar
  28. 28.
    Lorrain, N., Chaffron, L., and Carry, C., J. Metastable Nanocryst. Mater., 1999, vol. 2, p. 153.Google Scholar
  29. 29.
    Picas, J.A., Forn, A., Ajdelsztajn, L., and Schoenung, J., Powder Technol., 2004, vol. 148, p. 20.Google Scholar
  30. 30.
    Niranatlumpong, P., Ponton, C.B., and Evans, H.E., Oxid. Met., 2000, vol. 53, p. 241.Google Scholar
  31. 31.
    Chen, Y.X., Liang, X.B., Liu, Y., Wei, S.C., and Xu, B.S., Surf. Eng., 2010, vol. 26, p. 407.Google Scholar
  32. 32.
    Huang, R., Sone, M., Ma, W., and Fukanuma, H., Surf. Coat. Technol., 2015, vol. 261, p. 278.Google Scholar
  33. 33.
    Groza, J.R., J. Mater. Eng. Perform., 1993, vol. 2, p. 283.Google Scholar
  34. 34.
    Eisen, W.B., Ferguson, B.L., German, R.M., Iacocca, R., Lee, P.W., Madan, D., Moyer, K., Sanderow, H., and Trudel, Y., ASM Handbook, vol. 7: Powder Metal Technologies and Applications, ASM Int., 1998, pp. 1401–1423.Google Scholar
  35. 35.
    Eddine, W.Z., Matteazzi, P., and Celis, J.P., Wear, 2013, vol. 297, p. 762.Google Scholar
  36. 36.
    Evans, H.E. and Taylor, M.P., Oxid. Met., 2001, vol. 55, p. 17.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Tarbiat Modares University, Faculty of Engineering and Technology, Department of Materials EngineeringTehranIran

Personalised recommendations