Advertisement

The Effect of the Structure of a Positive Electrode on the Process of Discharge of a Lithium–Oxygen Power Source. The Monoporous Cathode Theory

  • V. A. BogdanovskayaEmail author
  • Yu. G. ChirkovEmail author
  • V. I. Rostokin
  • V. V. Yemetz
  • O. V. KorchaginEmail author
  • V. N. Andreev
  • O. V. Tripachev
PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • 26 Downloads

Abstract

The results of computerized simulation of the process of formation of lithium peroxide attending the discharge of lithium–oxygen power source, in individual pore of constant radius are presented. It is found that, in the model of porous cathode (pores are tortuous, noncrossing, and of the same radius), variation of specific surface of the pores (decrease of pore radius) does not enable a possibility to increase notably the value of specific capacity of the cathode. A necessity of presence of both macropores, and micro- and mesopores in the structure of the active material was discussed. The effect of porous structure of the cathode on the discharge characteristics of LOPS was experimentally demonstrated by the example of some cathode materials (carbon blacks and carbon nanotubes). The highest discharge capacity was achieved with use of the sample of CNT-TNaOH combining pores of various sizes, which corresponds to the formulated hypotheses about an optimal structure of the active cathode material.

Keywords:

cathode of lithium–oxygen power source process of discharge computerized simulation porous cathode theory carbon materials nanotubes 

Notes

ACKNOWLEDGMENTS

This work was supported by the Competitiveness Enhancement Program of National Research Nuclear University (MEPhI), and partially supported by the Russian Foundation for Basic Research (grant no. 16-03-00378 A, IPCE, Russian Academy of Sciences).

REFERENCES

  1. 1.
    Abraham, K.M. and Jiang, Z., J. Electrochem. Soc., 1996, vol. 143, p. 1.CrossRefGoogle Scholar
  2. 2.
    Bruce, P.G., Freuriberger, S.A., Hardwick, L.J., and Tarascon, J.M., Nat. Mater., 2012, vol. 11, p. 19.CrossRefGoogle Scholar
  3. 3.
    Laoire, C.O., Mukerjee, S., Abraham, K.M., et al., J. Phys. Chem. C, 2009, vol. 113, no. 46, p. 20127.CrossRefGoogle Scholar
  4. 4.
    Tran, C., Yang, X.-Q., and Qu, D., J. Power Sources, 2010, vol. 195, no. 7, p. 2057.CrossRefGoogle Scholar
  5. 5.
    Yang, X.-H., He, P., and Xia, Y.-Y., Electrochem. Commun., 2009, vol. 11, no. 6, p. 1127.CrossRefGoogle Scholar
  6. 6.
    Laoire, C.O., Mukerjee, S., Abraham, K.M., et al., J. Phys. Chem. C, 2010, vol. 114, no. 19, p. 9178.CrossRefGoogle Scholar
  7. 7.
    Andrei, P., Zheng, J.P., Hendrickson, M., and Plichta, E.J., J. Electrochem. Soc., 2010, vol. 157, p. A1287.CrossRefGoogle Scholar
  8. 8.
    Sandhu, S., Fellner, J., and Brutchen, G., J. Power Sources, 2007, vol. 164, no. 1, p. 365.CrossRefGoogle Scholar
  9. 9.
    Dabrowski, T., Struck, A., Fenske, D., et al., J. Electrochem. Soc., 2015, vol. 162, no. 14, p. A2796.CrossRefGoogle Scholar
  10. 10.
    Read, J., Mutolo, K., Ervin, M., et al., J. Electrochem. Soc., 2003, vol. 150, p. A1351.CrossRefGoogle Scholar
  11. 11.
    Read, J., J. Electrochem. Soc., 2002, vol. 149, p. A1190.CrossRefGoogle Scholar
  12. 12.
    Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Russ. J. Electrochem., 2011, vol. 47, p. 71.CrossRefGoogle Scholar
  13. 13.
    Shu, C., Li, S.B., and Zhang, B., ChemSusChem, 2015, vol. 8, p. 3973.CrossRefGoogle Scholar
  14. 14.
    Tarasevich, M.R., Andreev, V.N., Korchagin, O.V., and Tripachev, O.V., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 1.CrossRefGoogle Scholar
  15. 15.
    Li, Y., Li, W., He, X., et al., J. Energy Chem., 2016, vol. 25, p. 131.CrossRefGoogle Scholar
  16. 16.
    Kang, J., Li, O.L., and Saito, N., J. Power Sources, 2014, vol. 261, p. 15.CrossRefGoogle Scholar
  17. 17.
    Kraytsberg, A. and Ein-Eli, Y., J. Power Sources, 2011, vol. 196, no. 3, p. 886.CrossRefGoogle Scholar
  18. 18.
    Yoon, Y., Ganapathi, K., and Salahuddin, S., Nano Lett., 2011, vol. 11, p. 5071.CrossRefGoogle Scholar
  19. 19.
    Meini, S., Piana, M., Beyer, H., et al., J. Electrochem. Soc., 2012, vol. 159, p. A2135.CrossRefGoogle Scholar
  20. 20.
    Wang, J., Li, Y., and Sun, X., Nano Energy, 2013, vol. 2, no. 4, p. 443.CrossRefGoogle Scholar
  21. 21.
    Bogdanovskaya, V.A., Koltsova, E.M., Zhutaeva, G.V., Radina, M.V., Kazanskii, L.P., Tarasevich, M.R., Skichko, E.A., and Gavrilova, N.N., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, p. 45.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryMoscowRussia
  2. 2.National Research Nuclear University (MEPhI)MoscowRussia

Personalised recommendations