A Scale of Absolute Surface Potentials of Metals. Part I

  • Yu. Ya. AndreevEmail author


The problem of the absolute electrode potentials of metals is considered as a problem that encompasses both the thermodynamics of electrode reactions on metals and the surface state of a metal. Within the framework of the physical chemistry of the surface, an adsorption model of the surface layer (SL) of a metal is developed, differing by using the value of the excessive Gibbs surface energy \(\Delta {{G}_{{\text{S}}}}.\) For the low-index facet (hkl) of the metal, the magnitude of the absolute surface potential is introduced as Es = \({{\Delta {{G}_{{\text{S}}}}} \mathord{\left/ {\vphantom {{\Delta {{G}_{{\text{S}}}}} {zF}}} \right. \kern-0em} {zF}}\) (z is the valence of metal), which, like the magnitude, depends on the electrode potential. On the other hand, a statistical model is used that relates the autoadsorption of point defects, the surface atomic vacancies V(S) in SL, and adatoms with the surface energy as \(\Delta {{G}_{{\text{S}}}}\) = –RTlnNV(S)= –RTlnNad. For an uncharged metal, the uncharged metal value \(\Delta G_{{_{{\text{S}}}}}^{0}\) is maximum, which gives a minimum of the mole fraction of Nad = NV(S) and leads to a zero charge potential formula as \(E_{N}^{0}\) = –\({{\Delta G_{{\text{S}}}^{0}} \mathord{\left/ {\vphantom {{\Delta G_{{\text{S}}}^{0}} {zF}}} \right. \kern-0em} {zF}}\). The ideal polarization of the electrode relative to EN values of \(\Delta G_{{\text{S}}}^{{}}\) and Gadsto zero that corresponds to the maximum of NV(S) or Nad. These extreme points of the surface activity of atoms determine the scale of absolute values of Es calculated using known table values \(\Delta {{G}_{{\text{S}}}}\)(hkl) at T = 0 K obtained by the DFT method. When assessing the effect of temperature or potential, the change in the ΔGS and NV(S) (or Nad) values in thermal and electrochemical processes is considered. In Part 2, an application of this scale to the processes of evolution of hydrogen and passivation of metals is considered.


scale absolute surface potential single crystal metal Gibbs surface energy point surface defects atomic vacancies adatoms zero charge potential 



  1. 1.
    Gibbs, J.W., Elementary Principles in Statistical Mechanics, New York: Dover Publ., 1960.Google Scholar
  2. 2.
    Frumkin, A., Philos. Mag., 1920, vol. 40, p. 363.CrossRefGoogle Scholar
  3. 3.
    Frumkin, A. and Gorodetzkaya, A., Z. Phys. Chem., 1928, vol. 136, p. 451.Google Scholar
  4. 4.
    Frumkin, A.N., Potentsialy nulevogo zaryada (Zero-Charge Potentials), Moscow: Nauka, 1982.Google Scholar
  5. 5.
    Antropov, I.I., Kinetics of Electrode Processes and Null Points of Metals, New Delhi: Council of Scientific and Industrial Research, 1960.Google Scholar
  6. 6.
    von Vetter, K.J., Elektrochemische Kinetik, Berlin, Göttingen, Heidelberg: Springer, 1961.Google Scholar
  7. 7.
    Frenkel, J., Z. Phys., 1928, vol. 51, p. 232.CrossRefGoogle Scholar
  8. 8.
    Oriani, R.A. and Johnson, Ch.A., in Modern Aspects of Electrochemistry, Bockris, J. and Conway, B.E., Eds., New York: Plenum Press, 1969.Google Scholar
  9. 9.
    Strelow, H., Z. Elektrochem., 1952, vol. 56, p. 119.Google Scholar
  10. 10.
    Trassatti, S., J. Electroanal. Chem., 1972, vol. 39, p. 163.CrossRefGoogle Scholar
  11. 11.
    Andreev, Yu.Ya., Russ. J. Phys. Chem. A, 1998, vol. 72, no. 3, p. 447.Google Scholar
  12. 12.
    Andreev, Yu.Ya., Electrochim. Acta, 1998, vol. 43, p. 2627.CrossRefGoogle Scholar
  13. 13.
    Andreev, Yu.Ya., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 1, p. 42.CrossRefGoogle Scholar
  14. 14.
    Andreev, Yu.Ya., Russ. J. Phys. Chem. A, 2005, vol. 79, no. 2, p. 179.Google Scholar
  15. 15.
    Tyson, W.R. and Miller, W.A., Surf. Sci., 1977, vol. 62, p. 267.CrossRefGoogle Scholar
  16. 16.
    Overbury, S.H., Bertrand, P.A., and Somorjai, G.A., Chem. Rev., 1975, vol. 75, p. 547.CrossRefGoogle Scholar
  17. 17.
    Kumikov, V.K. and Khokonov, K.B., J. Appl. Phys., 1983, vol. 54, p. 1346.CrossRefGoogle Scholar
  18. 18.
    Vitos, L., Ruban, A.V., Skriver, H.L., and Kollar, J., Surf. Sci., 1998, vol. 441, p. 186.CrossRefGoogle Scholar
  19. 19.
    Stolze, P., J. Phys.: Condens. Matter, 1994, vol. 6, p. 9495.Google Scholar
  20. 20.
    Miedema, A.R., Z. Metallkd., 1978, vol. 69, p. 287.Google Scholar
  21. 21.
    Bard, A.J., Inzelt, G., and Scholz, F., Electrochemical Dictionary, Springer, 2012.CrossRefGoogle Scholar
  22. 22.
    Shutlleworth, R., Proc. Phys. Soc., London, Sect. A, 1950, vol. 63, p. 444.Google Scholar
  23. 23.
    Lang, G. and Heusler, K.E., J. Electroanal. Chem., 1994, vol. 377, p. 1.CrossRefGoogle Scholar
  24. 24.
    Venstrem, E.K. and Rebinder, P.A., Dokl. Akad. Nauk SSSR, 1949, vol. 68, p. 239.Google Scholar
  25. 25.
    Andreev, Yu.Ya. and Kiselev, D.A., Philos. Mag., 2013, vol. 93, p. 2401.CrossRefGoogle Scholar
  26. 26.
    Andreev, Yu.Ya., Russ. J. Phys. Chem. A, 2000, vol. 74, no. 5, p. 808.Google Scholar
  27. 27.
    Methfessel, M., Henig, D., and Scheffler, M., Phys. Rev. B, 1992, vol. 46, p. 4816.CrossRefGoogle Scholar
  28. 28.
    Kraftmakher, Ya., Equilibrium Vacancies and Thermophysical Properties of Metals, Amsterdam: Elsevier, 1998.CrossRefGoogle Scholar
  29. 29.
    Damask, A.C., and Dienes, G.J., Point Defects in Metals, New York: Gordon and Breach, 1961.Google Scholar
  30. 30.
    Andreev, Yu.Ya., Zh. Fiz. Khim., 2001, vol. 75, no. 4, p. 609. Andreev, Yu.Ya. and Kutyrev, A.E., Russ. J. Phys. Chem. A, 2001, vol. 75, no. 4, p. 609.Google Scholar
  31. 31.
    Conway, B.E. and Bockris, J.O’M., Electrochim. Acta, 1961, vol. 3, p. 340.CrossRefGoogle Scholar
  32. 32.
    Simmons, R.Q. and Balluffi, R.W., Phys. Rev., 1960, vol. 119, p. 600.CrossRefGoogle Scholar
  33. 33.
    Simmons, R.Q. and Balluffi, R.W., Phys. Rev., 1962, vol. 125, p. 862.CrossRefGoogle Scholar
  34. 34.
    Simmons, R.Q. and Balluffi, R.W., Phys. Rev., 1963, vol. 129, p. 533.CrossRefGoogle Scholar
  35. 35.
    Mclellan, R.B., Trans. Metall. Soc. AIME, 1969, vol. 245, p. 379.Google Scholar
  36. 36.
    Ehrhart P., Jung P. Shultz H., Ultmaier H. // Atomic Defects in Metals. V.25 . Berlin: Springer 1991.Google Scholar
  37. 37.
    Gileadi, E. and Conway, B.E., in Modern Aspects of Electrochemistry No. 3, Bockris, J.O’M. and Conway, B.E., Eds., London: Butterworths, 1964.Google Scholar
  38. 38.
    Temkin, M.I., Zh. Fiz. Khim., 1941, vol. 15, p. 296.Google Scholar
  39. 39.
    Taylor, G.I., Proc. R. Soc. A, 1934, vol. 145, no. 362, p. 365.Google Scholar
  40. 40.
    Thomas, J.M. and Thomas, W.J., Introduction to the Principles of Heterogeneous Catalysis, London, New York: Academic Press, 1967.CrossRefGoogle Scholar
  41. 41.
    Proskurkin, M. and Frumkin, A., Z. Phys., 1931, vol. 155, p. 29.Google Scholar
  42. 42.
    Benuemann, K.H. and Tomanek, D., Phys. Rev. Lett., 1986, vol. 517, p. 2594.Google Scholar
  43. 43.
    Trasatti, S. and Lust, E., in Modern Aspects of Electrochemistry No. 33, White, R.E., Bockris, J., and Conway, B.E., Eds., New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publ., 1999.Google Scholar
  44. 44.
    Perkins, R. and Andersen, T., in Modern Aspects of Electrochemistry, Bockris, J. and Conway, B.E., Eds., New York: Plenum Press, 1969.Google Scholar
  45. 45.
    Cuesta, A., Kleinert, M., and Kolb, D.M., Phys. Chem. Chem. Phys., 2000, vol. 2, p. 5684.CrossRefGoogle Scholar
  46. 46.
    Vitanov, T., Popov, A., and Sevastianov, E., J. Electroanal. Chem., 1982, vol. 142, p. 289.CrossRefGoogle Scholar
  47. 47.
    Hamelin, A., Vitanov, T., Sevastyanov, E., and Popov, A., J. Electroanal. Chem., 1983, vol. 145, p. 225.CrossRefGoogle Scholar
  48. 48.
    Hennig, H. and Batrakov, V.V., Elektrokhimiya, 1979, vol. 15, p. 1933.Google Scholar
  49. 49.
    Bockris, J.O’M., Argade, S.D., and Gileadi, E., Electrochim. Acta, 1969, vol. 14, p. 1269.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research Technological University MISISMoscowRussia

Personalised recommendations