Advertisement

Interpretation of Cyclic Potentiodynamic Polarization Test Results for Study of Corrosion Behavior of Metals: A Review

  • S. Esmailzadeh
  • M. Aliofkhazraei
  • H. Sarlak
Investigation Methods for Physicochemical Systems
  • 9 Downloads

Abstract

The cyclic potentiodynamic polarization technique is a method for evaluating the susceptibility of a metal to localized corrosion such as pitting and crevice corrosion. This paper provides the information to conduct the cyclic polarization test correctly and to help performing the interpretation of the polarization scan properly. The effect of critical parameters including solution resistivity, scan rate, point of scan reversal, aggressive ions, corrosion inhibitors, metastable pits, metallurgical variables, temperature, dissolution gases, pH, immersion duration and surface roughness on the cyclic polarization curve and results interpretation are discussed. Then a number of cyclic potentiodynamic polarization curves for common metals and alloys in prevalent environments are given.

Keywords

Cyclic potentiodynamic polarization Corrosion Corrosion inhibitor Localized corrosion Pitting corrosion Protective surface film Scan rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Revie, R.W. and Uhlig, H.H., Corrosion and Corrosion Control, Hoboken, NJ: John Wiley and Sons, 2008.CrossRefGoogle Scholar
  2. 2.
    McCafferty, E., Introduction to Corrosion Science, New York: Springer, 2010.CrossRefGoogle Scholar
  3. 3.
    Hameed, R.A. and Abdallah, M., Prot. Met. Phys. Chem. Surf., 2017, vol. 1.Google Scholar
  4. 3a.
    Hameed Abdel, R. S. and Abdallah, M., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 1, p.113.CrossRefGoogle Scholar
  5. 4.
    Aiad, I., Shaban, Samy M., Moustafa, H.Y., and Hamed, Ahmed, Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 1, p.135.CrossRefGoogle Scholar
  6. 5.
    Khaled, R.Y. and Abdel Gaber, A., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p.956.CrossRefGoogle Scholar
  7. 6.
    Sistaninia, M., Ravari, F.B., and Dadgarinezhad, A., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p.950.CrossRefGoogle Scholar
  8. 7.
    Kuznetsova, E. and Remezkova, L., Prot. Met. Phys. Chem. Surf., 2001, vol. 37, p.262.Google Scholar
  9. 8.
    Freiman, L. and Kasatkina, M., Prot. Met. Phys. Chem. Surf., 2000, vol. 36, p.85.Google Scholar
  10. 9.
    Krasnoyarskii, V., Prot. Met. Phys. Chem. Surf., 2002, vol. 38, p.157.Google Scholar
  11. 10.
    Aliofkhazraei, M., Gharabagh, R.S., Teimouri, M., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p. 1093.CrossRefGoogle Scholar
  12. 11.
    Abolhassani, A., Aliofkhazraei, M., Farhadi, S.S., and Rouhaghdam, A.S., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p.658.CrossRefGoogle Scholar
  13. 12.
    Farhadi, S., Aliofkhazraei, M., Darband, G., et al., J. Mater. Eng. Perform., 2017, vol. 26, p. 4797.CrossRefGoogle Scholar
  14. 13.
    Sanati, A., Raeissi, K., and Edris, H., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p.902.CrossRefGoogle Scholar
  15. 14.
    Mohammadnejad, M., Habibolahzadeh, A., and Yousefpour, M., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p.100.CrossRefGoogle Scholar
  16. 15.
    Shreir, L.L., Burstein, G.T., and Jarman, R.A., Corrosion, Butterworth-Heinemann, 1994, vol.1.Google Scholar
  17. 16.
    Thompson, N.G. and Payer, J.H., DC Electrochemical Test Methods, NACE Int., 1998.Google Scholar
  18. 17.
    Tait, W.S., An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, PairODocs Publ., 1994.Google Scholar
  19. 18.
    Sun, Q., Chen, K., Fang, H., et al., Int. J. Electrochem. Sci., 2016, vol. 11, p. 5855.CrossRefGoogle Scholar
  20. 19.
    Silverman, D.C., Practical Corrosion Prediction Using Electrochemical Techniques, John Wiley and Sons, 2011.CrossRefGoogle Scholar
  21. 20.
    Stansbury, E.E. and Buchanan, R.A., Fundamentals of Electrochemical Corrosion, ASM Int., 2000.Google Scholar
  22. 21.
    ASTM G61.68: Standard Test Method, West Conshohocken, PA: ASTM Int., 2014.Google Scholar
  23. 22.
    Baboian, R. and Haynes, G., ASTM Int., 1981.Google Scholar
  24. 23.
    ASTM F2129.15: Standard Test Method, West Conshohocken, PA: ASTM Int., 2015.Google Scholar
  25. 24.
    Wang, B., Liu, J., Yin, M., et al., Mater. Corros., 2016, vol. 67, p.51.CrossRefGoogle Scholar
  26. 25.
    Zhao, J., Xu, D., Shahzad, M.B., et al., Appl. Surf. Sci., 2016, vol. 386, p.371.CrossRefGoogle Scholar
  27. 26.
    Atapour, M., Sarlak, H., and Esmailzadeh, M., Int. J. Adv. Manuf. Technol., 2016, vol. 83, p.721.CrossRefGoogle Scholar
  28. 27.
    Frankel, G., J. Electrochem. Soc., 1998, vol. 145, p. 2186.CrossRefGoogle Scholar
  29. 28.
    Amin, M.A., El Bagoury, N., Omar, A.A., and Megahed, A.S., Int. J. Electrochem. Sci., 2012, vol. 7, p. 2643.Google Scholar
  30. 29.
    Khamaj, J.A., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p.886.CrossRefGoogle Scholar
  31. 30.
    Loto, R.T. and Adeleke, A., J. Failure Anal. Prev., 2016, vol. 16, p.874.CrossRefGoogle Scholar
  32. 31.
    Ma, J., Wen, J., Li, Q., and Zhang, Q., J. Power Sources, 2013, vol. 226, p.156.CrossRefGoogle Scholar
  33. 32.
    Zaid, B., Saidi, D., Hadji, S., and Benzaid, A., J. Corros. Sci. Eng., 2006, vol. 10, p. 1841.Google Scholar
  34. 33.
    Finšgar, M., Fassbender, S., Hirth, S., and Milošev, I., Mater. Chem. Phys., 2009, vol. 116, p.198.CrossRefGoogle Scholar
  35. 34.
    Finšgar, M., Fassbender, S., Nicolini, F., and Milošev, I., Corros. Sci., 2009, vol. 51, p.525.CrossRefGoogle Scholar
  36. 35.
    Kelly, R.G., Scully, J.R., Shoesmith, D., and Buchheit, R.G., Electrochemical Techniques in Corrosion Science and Engineering, New York: CRC Press, 2002.CrossRefGoogle Scholar
  37. 36.
    Mansfeld, F.B.U., Electrochemical Corrosion Testing, ASTM Int., 1981.CrossRefGoogle Scholar
  38. 37.
    Silverman, D.C., Corrosion, 1998, vol. 1, p.21.Google Scholar
  39. 38.
    Li, L., Qu, Q., Bai, W., et al., Int. J. Electrochem. Sci., 2012, vol. 7, p. 3773.Google Scholar
  40. 39.
    Junguang, H., Jiuba, W., Lemin, S., and Junwei, G., Corros. Sci. Prot. Technol., 2015, vol. 27, p.449.Google Scholar
  41. 40.
    Amin, M.A., Arabian J. Chem., 2013, vol. 6, p.87.CrossRefGoogle Scholar
  42. 41.
    Li, T., Zhang, H., He, Y., and Wang, X., Mater. Corros., 2015, vol. 66, p.7.CrossRefGoogle Scholar
  43. 42.
    Chen, S., Li, G.M., Chang, W.S., and Chen, X.Q., Proc. Int. Conference on Insulating Materials, Material Application and Electrical Engineering MAEE 2013, Changsha, 2013, vol. 80, p.84.Google Scholar
  44. 43.
    Ling, Y., Elkenbracht, J.C., Flanagan, W.F., and Lichter, B.D., J. Electrochem. Soc., 1997, vol. 144, p. 2689.CrossRefGoogle Scholar
  45. 44.
    Cotolan, N., Pop, A., Marconi, D., et al., Mater. Corros., 2015, vol. 66, p.635.CrossRefGoogle Scholar
  46. 45.
    Loto, R.T., J. Mater. Environ. Sci., 2013, vol. 4, p.448.Google Scholar
  47. 46.
    Salasi, M., Stachowiak, G., and Stachowiak, G., Proc. 18th Int. Corrosion Congress, Perth, 2011, p. 1335.Google Scholar
  48. 47.
    Lee, C.K. and Shih, H.C., J. Electrochem. Soc., 1995, vol. 142, p.731.CrossRefGoogle Scholar
  49. 48.
    Adeli, M., Raeissi, K., and Golozar, M.A., Corrosion, 2010, vol. 66, p. 075002.CrossRefGoogle Scholar
  50. 49.
    Chen, Y., Duval, T., Hung, U., et al., Corros. Sci., 2005, vol. 47, p. 2257.CrossRefGoogle Scholar
  51. 50.
    Atapour, M., Sarlak, H., and Esmailzadeh, M., Int. J. Adv. Manuf. Technol., 2016, vol. 83, p.721.CrossRefGoogle Scholar
  52. 51.
    Bavarian, B., Zhang, J., and Reiner, L., Corrosion, 2013, vol. 1, p.10.Google Scholar
  53. 52.
    Sherif, E.S.M., Int. J. Electrochem. Sci., 2011, vol. 6, p. 1479.Google Scholar
  54. 53.
    Sherif, E.S.M., Int. J. Electrochem. Sci., 2012, vol. 7, p. 4847.Google Scholar
  55. 54.
    Sherif, E.S.M., Potgieter, J.H., Comins, J.D., et al., Corros. Sci., 2009, vol. 51, p. 1364.CrossRefGoogle Scholar
  56. 55.
    Sherif, E.M. and Almajid, A.A., Int. J. Electrochem. Sci., 2011, vol. 6, p. 2131.Google Scholar
  57. 56.
    Ismail, A. and Suhairi, L., Proc. 5th Int. Conference on Mechanical and Manufacturing Engineering ICME, Bandung, 2014, vol. 130, p.134.Google Scholar
  58. 57.
    Eghlimi, A., Shamanian, M., and Raeissi, K., Surf. Coat. Technol., 2014, vol. 244, p.45.CrossRefGoogle Scholar
  59. 58.
    Shan, X., Ha, H., and Payer, J., Metall. Mater. Trans. A, 2009, vol. 40, p. 1324.CrossRefGoogle Scholar
  60. 59.
    Moayed, M., Laycock, N., and Newman, R., Corros. Sci., 2003, vol. 45, p. 1203.CrossRefGoogle Scholar
  61. 60.
    Liu, S., Sun, H., Sun, L., and Fan, H., Corros. Sci., 2012, vol. 65, p.520.CrossRefGoogle Scholar
  62. 61.
    Michalska, J., Proc. 7th Int. Conference on Diffusion in Solids and Liquids, Mass Transfer, DSL, Algarve, 2012, vol. 620, p.625.Google Scholar
  63. 62.
    Duan, D., Choi, Y.S., Nešiá, S., et al., Corrosion, 2010, vol. 1, p.14.Google Scholar
  64. 63.
    Tzaneva, B., J. Chem. Technol. Metall., 2013, vol. 48, p.383.Google Scholar
  65. 64.
    Sherif, E.S.M., Almajid, A., Bairamov, A., and Al Zahrani, E., Int. J. Electrochem. Sci., 2012, vol. 7, p. 2796.Google Scholar
  66. 65.
    Sherif, E.S.M., Int. J. Electrochem. Sci., 2012, vol. 7, p. 4235.Google Scholar
  67. 66.
    Ling, Y., Elkenbracht, J.C., Flanagan, W.F., and Lichter, B.D., J. Electrochem. Soc., 1997, vol. 144, p. 2689.CrossRefGoogle Scholar
  68. 67.
    Hong, T. and Nagumo, M., Corros. Sci., 1997, vol. 39, p. 1665.CrossRefGoogle Scholar
  69. 68.
    Shahryari, A., Kamal, W., and Omanovic, S., Mater. Lett., 2008, vol. 62, p. 3906.CrossRefGoogle Scholar
  70. 69.
    Lothongkum, G., Vongbandit, P., and Nongluck, P., Anti-Corros. Methods Mater., 2006, vol. 53, p.169.Google Scholar
  71. 70.
    Sherif, E.S.M., Mater. Chem. Phys., 2011, vol. 129, p.961.CrossRefGoogle Scholar
  72. 71.
    Raza, M., Ghauri, F., Awan, M., et al., IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 146, p. 012021.CrossRefGoogle Scholar
  73. 72.
    Habib, K., Optik, 2011, vol. 122, p.919.CrossRefGoogle Scholar
  74. 73.
    Zaid, B., Saidi, D., Benzaid, A., and Hadji, S., Corros. Sci., 2008, vol. 50, p. 1841.CrossRefGoogle Scholar
  75. 74.
    Sherif, E., Int. J. Electrochem. Sci., 2012, vol. 7, p. 4235.Google Scholar
  76. 75.
    Pardo, A., Merino, M., Coy, A.E., et al., Corros. Sci., 2008, vol. 50, p.823.CrossRefGoogle Scholar
  77. 76.
    Zhong, C., He, M., Liu, L., et al., Surf. Coat. Technol., 2010, vol. 205, p. 2412.CrossRefGoogle Scholar
  78. 77.
    Rauf, A. and Mahdi, E., Int. J. Electrochem. Sci., 2012, vol. 7, p. 4673.Google Scholar
  79. 78.
    Bergant, Z., Trdan, U., and Grum, J., Corros. Sci., 2014, vol. 88, p.372.CrossRefGoogle Scholar
  80. 79.
    Souza, M.E., Lima, L., Lima, C.R., et al., J. Mater. Sci.: Mater. Med., 2009, vol. 20, p.549.Google Scholar
  81. 80.
    Rosenbloom, S.N. and Corbett, R.A., An Assessment of ASTM F 2129 Electrochemical Testing of Small Medical Implants-Lessons Learned, NACE CORROSION, Houston, TX, 2007.Google Scholar
  82. 81.
    Raza, M.A., Ghauri, F.A., Awan, M.S., et al., Proc. 14th Int. Symposium on Advanced Materials, ISAM 2015, Islamabad, 2015.Google Scholar
  83. 82.
    Abbasi, S., Aliofkhazraei, M., Mojiri, H., et al., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p.573.CrossRefGoogle Scholar
  84. 83.
    Rauf, A. and Mahdi, E., Int. J. Electrochem. Sci., 2012, vol. 7, p. 4673.Google Scholar
  85. 84.
    Souza, M.E.P., Lima, L., Lima, C.R.P., et al., J. Mater. Sci.: Mater. Med., 2009, vol. 20, p. 549.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Materials EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations