Advertisement

Melting of Benzoic Acid in Mixtures with Various Organic Compounds after Plastic Deformation under High Pressure

  • V. A. Zhorin
  • M. R. Kiselev
  • V. A. Kotenev
New Substances, Materials and Coatings

Abstract

Mixtures of benzoic acid with various organic compounds are subjected to plastic deformation in Bridgman anvils under a pressure of 1 GPa at room temperature. The influence of high-pressure plastic deformation on the calorimetric behavior of the deformed layer of benzoic acid in mixtures with various organic components is studied under conditions of thermal treatment (programmed heating at a constant rate). The parameters for the process of melting of deformed layers of benzoic acid mixtures depending on the chemical composition are studied by differential scanning calorimetry (DSC). In all cases, the melting point Tm decreased by 5–8 deg. The melting enthalpy both can increase by 1.7 times and decrease by 2.3 times. In mixtures with organic indicators, the melting enthalpy of the acid depends on the pH of the indicator and reaches 750 J g–1 in a mixture with Congo red.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polymer Blends, Paul, D.R. and Newman, S., Eds., New York: Academic Press, 1978.Google Scholar
  2. 2.
    Hybrid Nanocomposites for Nanotechnology, Mehrani, L., Ed., Springer Science + Business Media, 2009.Google Scholar
  3. 3.
    Grishina, A.D., Krivenko, T.V., Savel’ev, V.V., and Vannikov, A.V., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 5, p.797.CrossRefGoogle Scholar
  4. 4.
    Chernyad’ev, A.Yu., Kotenev, V.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 4, p.670.CrossRefGoogle Scholar
  5. 5.
    Aslamazova, T.R., Kotenev, V.A., Lomovskaya, N.Yu., Lomovskoi, V.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 6, p. 1012.CrossRefGoogle Scholar
  6. 6.
    Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., Gladkikh, N.A., Terekhova, E.V., Kotenev, V.A., Kablov, E.N., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 6, p.964.CrossRefGoogle Scholar
  7. 7.
    Oxide Thin Films, Multilayers, and Nanocomposites, Mele, P., Endo, T., Arisawa, S., Li., C., and Tsuchiya, T., Eds., Springer Science + Business Media, 2015.Google Scholar
  8. 8.
    Flamm, D.L. and Auciello, O., Plasma Deposition, Treatment, and Etching of polymers: The Treatment and Etching of Polymers, Elsevier, 2012.Google Scholar
  9. 9.
    Zhorin, V.A., Kiselev, M.R., and Kotenev, V.A., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 5, p.876.CrossRefGoogle Scholar
  10. 10.
    Youxian, D., Griesser, H.J., and Mau, A.W.-H., et al., Polymer, 1991, vol. 32, no. 6, pp. 1126–1130.CrossRefGoogle Scholar
  11. 11.
    Kotenev, V.A., Kiselev, M.R., Vysotskii, V.V., Averin, A.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 5, p.825.CrossRefGoogle Scholar
  12. 12.
    Larsen, H.A. and Drickamer, H.G., J. Phys. Chem., 1957, vol. 61, no. 12, p. 1643.CrossRefGoogle Scholar
  13. 13.
    Kryuchkov, A.I., Zhorin, V.A., Prut, E.V., Nikol’skii, V.G., Budnitskii, Yu.M., Akutin, M.S., and Enikolopyan, N.S., Vysokomol. Soedin., Ser. A, 1982, vol. 24, no. 1, p.184.Google Scholar
  14. 14.
    Zhorin, V.A., Kissin, Yu.V., Luizo, Yu.V., Fridman, N.V., and Enikolopyan, N.S., Vysokomol. Soedin., Ser. A, 1976, vol. 18, no. 12, p. 2677.Google Scholar
  15. 15.
    Zhorin, V.A., Godovskii, Yu.K., and Enikolopyan, N.S., Vysokomol. Soedin., Ser. A, 1982, vol. 24, no. 5, p.953.Google Scholar
  16. 16.
    Zhorin, V.A., Plast. Massy, 2018, nos. 3–4, pp. 35–40.Google Scholar
  17. 17.
    Zhorin, V.A., Kiselev, M.R., and Roldugin, V.I., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 11, pp. 2070–2077.CrossRefGoogle Scholar
  18. 18.
    Zhorin, V.A., Kiselev, M.R., Grachev, A.V., and Ladygina, T.A., Combust., Explos., Shock Waves, 2018, vol. 54, no. 1, pp. 47–57.CrossRefGoogle Scholar
  19. 19.
    Zhorin, V.A. and Kiselev, M.R., Plast. Massy, 2017, nos. 3–4, pp. 6–11.Google Scholar
  20. 20.
    Zhorin, V.A., Kiselev, M.R., and Kotenev, V.A., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 5, pp. 819–825.CrossRefGoogle Scholar
  21. 21.
    Zhorin, V.A., Kiselev, M.R., and Kotenev, V.A., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 4, pp. 703–710.CrossRefGoogle Scholar
  22. 22.
    Berlin, Yu.A., Beshenko, S.I., Zhorin, V.A., Ovchinnikov, A.A., and Enikolopyan, N.S., Dokl. Akad. Nauk SSSR, 1981, vol. 260, no. 6, pp. 1386–1390.Google Scholar
  23. 23.
    Berlin, Yu.A., Beshenko, S.I., Zhorin, V.A., and Enikolopyan, N.S., Dokl. Akad. Nauk SSSR, 1982, vol. 262, no. 4, pp. 911–913.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations