Advertisement

Hydrogen (H2) Adsorption in Model Carbon Adsorbents with Slitlike Micropores

  • V. Yu. Yakovlev
  • A. V. Shkolin
  • A. A. Fomkin
  • I. E. Men’shchikov
Physicochemical Processes at the Interfaces
  • 14 Downloads

Abstract

The Dubinin theory of volume filling of micropores and the linearity of adsorption isosteres were used to calculate the adsorption of hydrogen on model microporous adsorbents with slitlike pores. In calculating, the model adsorbents were considered the micropores of which were formed through a progressive removal of one, two, and so on to seven layers of hexagonal carbon in a graphite crystalline structure, while the micropore sizes varied within a range from 0.5 to 2.5 nm. The integral energy of adsorption was evaluated for the model structures and most of industrial carbon adsorbents. The obtained results were compared with experimental data. Dependences of the gravimetric density of hydrogen on temperature and pressure were analyzed.

Keywords

adsorption hydrogen model adsorbents porous structure theory of volume filling of micropores (TVFM) micropores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Puchkov, V.M., Nauka Obraz., 2011, no. 18, p.18.Google Scholar
  2. 2.
    Tarasov, B.P., Lototskii, M.V., and Yartys’, V.A., Russ. J. Gen. Chem., 2007, vol. 77, no. 4, p.694.CrossRefGoogle Scholar
  3. 3.
    Gamburg, D.Yu., Semenov, V.P., Dubovkin N.F., and Smirnova, L.N., Vodorod. Svoistva, poluchenie, khranenie, transportirovanie, primenenie. Spravochnik (Hydrogen. Properties, Synthesizing, Storage, Transportation, Application. Handbook), Moscow: Khimiya, 1989.Google Scholar
  4. 4.
    Dillon, A.C., Jones, K.M., Bekkedahl, T.A., et al., Nature, 1997, vol. 386, p.377.CrossRefGoogle Scholar
  5. 5.
    Amankwah, A.G., Noh, J.S., and Schwarz, J.A., Int. J. Hydrogen Energy, 1989, vol. 14, p.437.CrossRefGoogle Scholar
  6. 6.
    Schlapbach, L., MRS Bull., 2002, vol. 27, no. 9, p.675.CrossRefGoogle Scholar
  7. 7.
    Yartys, V.A. and Lototsky, M.V., Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, Veziroglu, T.N., Zaginachenko, S.Yu., and Shorokhod, S.Yu., Eds., Kluwer Academic Publ., 2004.Google Scholar
  8. 8.
    A Multiyear Plan for the Hydrogen R and D Program: Rationale, Structure, and Technology Roadmaps, Office of Power Delivery, Office of Power Technologies, Energy Efficiency and Renewable Energy, U.S. Department of Energy, 1999.Google Scholar
  9. 9.
    Chahine, R. and Bose, T.K., Int. J. Hydrogen Energy, 1994, vol. 19, p.161.CrossRefGoogle Scholar
  10. 10.
    Fomkin, A.A., Sinitsyn, V.A., and Gur’yanov, V.V., Colloid J., 2008, vol. 70, no. 3, p.372.CrossRefGoogle Scholar
  11. 11.
    Dubinin, M.M., Adsorbtsiya i poristost' (Adsorption and Porosity), Moscow: Military Academy of Chemical Defense Named after Marshal of the USSR S.K. Timoshenko, 1972.Google Scholar
  12. 12.
    Fomkin, A.A., Adsorption, 2005, vol. 11, nos. 3–4, p.425.CrossRefGoogle Scholar
  13. 13.
    Fomkin, A.A., Gusev, V.Yu., Regent, N.I., et al., Izv. Akad. Nauk Latv. SSR, Ser. Khim., 1991, no. 223, p.223.Google Scholar
  14. 14.
    Shkolin, A.V., Fomkin, A.A., Tsivadze, A.Yu., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 6, p.955.CrossRefGoogle Scholar
  15. 15.
    Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk: Siberian Branch Russ. Acad. Sci., 1995, p.513.Google Scholar
  16. 16.
    Dubinin, M.M., in Adsorbtsiya v mikroporakh (Adsorption in Micropores), Dubinin, M.M. and Serpinskii, V.V., Eds., Moscow: Nauka, 1983, p.186.Google Scholar
  17. 17.
    Fomkin, A.A. and Sinitsyn, V.A., Prot. Met. Phys. Chem. Surf., 2008, vol. 44, no. 2, p.150.Google Scholar
  18. 18.
    Cracknell, R., Gordon, P., and Keith, E., J. Phys. Chem., 1993, vol. 97, p.494.CrossRefGoogle Scholar
  19. 19.
    Pauling, L., The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Ithaca, NY: Cornell Univ. Press, 1940.Google Scholar
  20. 20.
    Vainshtein, B., Fridkin, V., and Indenbom, V., Structure of Crystals, vol. 2 of Modern Crystallography, Berlin, Heidelberg: Springer, 1995, p.82.CrossRefGoogle Scholar
  21. 21.
    Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Thermophysical Properties of Gases and Liquids. Handbook), Moscow: Nauka, 1972, p.720.Google Scholar
  22. 22.
    Bretsznajder, S., Wlasnosci Gazów i Cieczy, Warszawa: Wydawnictwo Wydawnictwa Naukowo-Techniczne, 1962.Google Scholar
  23. 23.
    Yakovlev, V.Yu., Shkolin, A.V., Fomkin, A.A., et al., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 3, p.552.CrossRefGoogle Scholar
  24. 24.
    Stan, G. and Cole, M.W., J. Low Temp. Phys., 1998, vol. 110, p.539.CrossRefGoogle Scholar
  25. 25.
    Pauling, L., General Chemistry, San Francisco, CA: W.H. Freeman, 1970.Google Scholar
  26. 26.
    Kogan, V.S. and Breslavets, K.G., in Adsorbtsiya i poristost’ (Adsorption and Porosity), Dubinin, M.M. and Serpinskii, V.V., Eds., Moscow: Nauka, 1976, p.270.Google Scholar
  27. 27.
    Yasukochi, K. and Nagano, H., Proc. 9th Int. Cryogenic Engineering Conference, Kobe, May 11–14, 1982, Guildford, Surrey: Butterworth-Heinemann, 1982, p.34.Google Scholar
  28. 28.
    Toshiro, O., Ritsuo, T., and Masao, I., Gas Sep. Purif., 1993, vol. 7, no. 4, p.241.CrossRefGoogle Scholar
  29. 29.
    Shkolin, A.V. and Fomkin, A.A., Russ. Chem. Bull., 2009, vol. 58, p.717.CrossRefGoogle Scholar
  30. 30.
    Potapov, S.V., Fomkin, A.A., Sinitsyn, V.A., et al., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 6, p.639.CrossRefGoogle Scholar
  31. 31.
    Pulin, A.L., Fomkin, A.A., Sinitsyn, V.A., et al., Izv. Akad. Nauk, Ser. Khim., 2001, no. 57, p.57.Google Scholar
  32. 32.
    Hydrogen, Fuel Cells and Infrastructure Technologies Program. Multi-Year Research, Development and Demonstration Plan. Planned Program Activities for 2003-2010, U.S. Department of Energy, Energy Efficiency and Renewable Energy, 2003.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. Yu. Yakovlev
    • 1
    • 2
  • A. V. Shkolin
    • 1
    • 3
  • A. A. Fomkin
    • 1
  • I. E. Men’shchikov
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Nuclear Safety InstituteRussian Academy of ScienceMoscowRussia
  3. 3.LLC AKELA-NKhimkiRussia

Personalised recommendations