Advertisement

Corrosion Inhibition of Carbon Steel in Aqueous HCl Solutions by Acid Pre-Magnetization Technique: Experimental Study and Modelling

  • A. Hashemizadeh
  • M. J. Ameri
  • B. Aminshahidi
  • M. Gholizadeh
Physicochemical Problems of Materials Protection

Abstract

The effect of magnetization of acid before usage (pre-magnetization technique) on the corrosion inhibition of carbon steel (CS) in 7.5, 10 and 12.5 wt % (2.2, 3.0 and 3.8 M) HCl solutions were investigated by means of gravimetric weight loss method. Response Surface Methodology (Box-Behnken design) has been used to study and modelling the effects of magnetic field (MF) intensity, acid concentration, and elapsed time on inhibition efficiency. The experiments reveal that pre-magnetization is a suitable inhibitor in HCl solutions. The maximum percentage inhibition efficiency was found to be 93% for 12.5 wt % HCl. The results showed that the inhibition efficiency rises with increasing MF intensity. The surface structure of the CS was examined by SEM (scanning electron microscopy) both in the normal and magnetized HCl solutions.

Keywords

corrosion inhibition HCl carbon steel magnetic field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, J.S. and Judd, S.J., Water Resour., 1996, vol. 30, p.247.Google Scholar
  2. 2.
    Inaba, H., et al., J. Appl. Phys., 2004, vol. 96, no. 11, p. 6127.CrossRefGoogle Scholar
  3. 3.
    Higashitani, K., et al., J. Colloid Interface Sci., 1993, vol. 156, no. 1, p.90.CrossRefGoogle Scholar
  4. 4.
    Leal, P., et al., Corrosion, 2015, vol. 71, no. 7, p.865.CrossRefGoogle Scholar
  5. 5.
    Zhang, X., et al., Acta Metall. Sin. (Engl. Lett.), 2013, vol. 26, no. 3, p.345.CrossRefGoogle Scholar
  6. 6.
    Zhao, Y.-H., et al., Acta Metall. Sin. (Engl. Lett.), 2015, vol. 28, no. 8, p.984.CrossRefGoogle Scholar
  7. 7.
    Zhao, Y.-H., et al., Acta Metall. Sin. (Engl. Lett.), 2016, vol. 29, no. 6, p.546.CrossRefGoogle Scholar
  8. 8.
    Bikul’chyus, G., Butkene, R., and Ruchinskene, A., Prot. Met., 2006, vol. 42, no. 5, p.498.CrossRefGoogle Scholar
  9. 9.
    Bikulcius, G., et al., Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 2, p.223.CrossRefGoogle Scholar
  10. 10.
    Bel’chinskaya, L.I., Khodosova, N.A., and Bityutskaya, L.A., Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 2, p.203.CrossRefGoogle Scholar
  11. 11.
    Povetkin, V.V., Shibleva, T.G., and Zhitnikova, A.V., Prot. Met., 2008, vol. 44, no. 5, p.487.CrossRefGoogle Scholar
  12. 12.
    Riahi, A.A., Rouhaghdam, A.S., and Haghifam, M.R., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 6, p.692.CrossRefGoogle Scholar
  13. 13.
    Slimani, R., Zazi, N., and Chopart, J.-P., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, p.111.CrossRefGoogle Scholar
  14. 14.
    Afshin, H., Gholizadeh, M., and Khorshidi, N., Sci. Iran., 2010, vol. 17, p.74.Google Scholar
  15. 15.
    Su, N. and Wu, C.-F., Cem. Concr. Compos., 2003, vol. 25, no. 7, p.681.CrossRefGoogle Scholar
  16. 16.
    Fathi, A., et al., Water Res., 2006, vol. 40, no. 10, p. 1941.CrossRefGoogle Scholar
  17. 17.
    Bikul’chyus, G., Ruchinskene, A., and Deninis, V., Prot. Met., 2003, vol. 39, no. 5, p.443.CrossRefGoogle Scholar
  18. 18.
    Vermeiren, T., Anti-Corros. Methods Mater., 1958, vol. 5, no. 7, p.215.CrossRefGoogle Scholar
  19. 19.
    Alabi, A., et al., Water Res. Technol., 2015, vol. 1, no. 4, p.408.CrossRefGoogle Scholar
  20. 20.
    Hryniewicz, T., Rokosz, K., and Rokicki, R., Corros. Sci., 2008, vol. 50, no. 9, p. 2676.CrossRefGoogle Scholar
  21. 21.
    Chiba, A., et al., Corros. Sci., 1994, vol. 36, no. 3, p.539.CrossRefGoogle Scholar
  22. 22.
    Lielmezs, J. and Aleman, H., Thermochim. Acta, 1977, vol. 20, p.219.CrossRefGoogle Scholar
  23. 23.
    Xiao-Feng, P. and Bo, D., Phys. B (Amsterdam, Neth.), 2008, vol. 403, p. 3571.CrossRefGoogle Scholar
  24. 24.
    Nakagawa, J., et al., J. Appl. Phys., 1999, vol. 86, no. 5, p. 2923.CrossRefGoogle Scholar
  25. 25.
    Pang, X.-F. and Deng, B., Phys. B (Amsterdam, Neth.), 2008, vol. 403, no. 19, p. 3571.CrossRefGoogle Scholar
  26. 26.
    Deng, B. and Pang, X., Chin. Sci. Bull., 2007, vol. 52, no. 23, p. 3179.CrossRefGoogle Scholar
  27. 27.
    Niu, X., Du, K., and Xiao, F., Energy Build., 2011, vol. 43, no. 5, p. 1164.CrossRefGoogle Scholar
  28. 28.
    Niu, X., Du, K., and Xiao, F., Energy Build., 2011, vol. 43, p. 1164.CrossRefGoogle Scholar
  29. 29.
    Bahiraei, M. and Hangi, M., J. Magn. Magn. Mater., 2015, vol. 374, p.125.CrossRefGoogle Scholar
  30. 30.
    Salimath, A. and Ghosh, B., Curr. Appl. Phys., 2014, vol. 14, no. 11, p. 1526.CrossRefGoogle Scholar
  31. 31.
    Zhou, K., et al., J. Appl. Phys., 2000, vol. 88, no. 4, p. 1802.CrossRefGoogle Scholar
  32. 32.
    Chang, K.-T. and Weng, C., J. Appl. Phys., 2006, vol. 100, no. 4, p. 043917.CrossRefGoogle Scholar
  33. 33.
    Krems, R., Phys. Rev. Lett., 2004, vol. 93, no. 1, p. 013201.CrossRefGoogle Scholar
  34. 34.
    Moosavi, F. and Gholizadeh, M., J. Magn. Magn. Mater., 2014, vol. 354, p.239.CrossRefGoogle Scholar
  35. 35.
    Chang, K.-T. and Weng, C.-I., J. Appl. Phys., 2006, vol. 100, p. 043917.CrossRefGoogle Scholar
  36. 36.
    Lu, Z., et al., Corros. Sci., 2006, vol. 48, no. 10, p. 3049.CrossRefGoogle Scholar
  37. 37.
    Lu, Z. and Yang, W., Corros. Sci., 2008, vol. 50, no. 2, p.510.CrossRefGoogle Scholar
  38. 38.
    Neufeld, P., Corros. Sci., 1994, vol. 36, no. 11, p. 1947.CrossRefGoogle Scholar
  39. 39.
    Linhardt, P., Ball, G., and Schlemmer, E., Corros. Sci., 2005, vol. 47, no. 7, p. 1599.CrossRefGoogle Scholar
  40. 40.
    Li, J., et al., Mater. Corros., 2010, vol. 61, no. 4, p.306.Google Scholar
  41. 41.
    Shinohara, K. and Aogaki, R., Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1999, vol. 67, no. 2, p.126.Google Scholar
  42. 42.
    Li, X., et al., Electrochim. Acta, 2016.Google Scholar
  43. 43.
    Rhen, F. and Coey, J., J. Phys. Chem. B, 2006, vol. 110, no. 12, p. 6274.CrossRefGoogle Scholar
  44. 44.
    Chiba, A. and Ogawa, T., Corros. Eng., 1988, vol. 37, no. 10, p.531.CrossRefGoogle Scholar
  45. 45.
    Jayaraman, T., Guruswamy, S., and Free, M.L., Corrosion, 2007, vol. 63, no. 11, p. 1042.CrossRefGoogle Scholar
  46. 46.
    Li, Y., et al., J. Non-Cryst. Solids, 2014, vol. 392, p.51.CrossRefGoogle Scholar
  47. 47.
    Peev, T., Mandjukova, B., and Mandjukova, N., Corrosion, 1987, vol. 43, no. 12, p.739.CrossRefGoogle Scholar
  48. 48.
    Ghabashy, M., Sedahmed, G., and Mansour, I., Br. Corros. J., 2013.Google Scholar
  49. 49.
    Busch, K.W., et al., Corrosion, 1986, vol. 42, no. 4, p.211.CrossRefGoogle Scholar
  50. 50.
    Sueptitz, R., et al., Electrochim. Acta, 2011, vol. 56, no. 17, p. 5866.CrossRefGoogle Scholar
  51. 51.
    Chiba, A., et al., Corros. Eng., 1992, vol. 45, no. 5, p.333.Google Scholar
  52. 52.
    Sueptitz, R., et al., Mater. Corros., 2014, vol. 65, no. 8, p.803.CrossRefGoogle Scholar
  53. 53.
    Hu, J., et al., Mater. Sci. Technol., 2010, vol. 26, no. 4, p.355.CrossRefGoogle Scholar
  54. 54.
    Yuan, B., et al., Corros. Sci., 2012, vol. 58, p.69.CrossRefGoogle Scholar
  55. 55.
    Li, J.-N., Zhang, P., and Bin, G., Trans. Nonferrous Met. Soc. China, 2011, vol. 21, p. s489.CrossRefGoogle Scholar
  56. 56.
    Sagawa, M., Trans. Jpn. Inst. Met., 1982, vol. 23, no. 1, p.38.CrossRefGoogle Scholar
  57. 57.
    Bi, C., et al., J. Chin. Soc. Corros. Prot., 2014, vol. 34, no. 4, p.339.Google Scholar
  58. 58.
    Bin, G., et al., Rare Met., 2008, vol. 27, no. 3, p.324.CrossRefGoogle Scholar
  59. 59.
    Zhang, P., et al., Trans. Nonferrous Met. Soc. China, 2016, vol. 26, no. 5, p. 1439.CrossRefGoogle Scholar
  60. 60.
    Chouchane, S., et al., J. Alloys Compd., 2010, vol. 506, no. 2, p.575.CrossRefGoogle Scholar
  61. 61.
    Li, X.-Y., et al., Int. J. Miner., Metall. Mater., 2014, vol. 21, no. 10, p. 1009.CrossRefGoogle Scholar
  62. 62.
    Espina-Hernández, J.H., et al., Corros. Sci., 2011, vol. 53, no. 10, p. 3100.CrossRefGoogle Scholar
  63. 63.
    Liu, H., et al., Corros. Sci., 2016, vol. 102, p.93.CrossRefGoogle Scholar
  64. 64.
    Zhang, X., et al., Rare Met., 2016, p.1.Google Scholar
  65. 65.
    Zhang, X., et al., J. Alloys Compd., 2017, vol. 698, p.241.CrossRefGoogle Scholar
  66. 66.
    Rucinskien, A., et al., Electrochem. Commun., 2002, vol. 4, no. 1, p.86.CrossRefGoogle Scholar
  67. 67.
    Srivastava, K. and Nigam, N., Br. Corros. J., 2013.Google Scholar
  68. 68.
    Baker, J.S. and Judd, S.J., Water Res., 1996, vol. 30, no. 2, p.247.CrossRefGoogle Scholar
  69. 69.
    Krishnaveni, K., Ravichandran, J., and Selvaraj, A., Acta Metall. Sin. (Engl. Lett.), 2013, vol. 26, no. 3, p.321.CrossRefGoogle Scholar
  70. 70.
    Mishra, A., Acta Metall. Sin. (Engl. Lett.), 2017, vol. 30, no. 4, p.326.CrossRefGoogle Scholar
  71. 71.
    Mishra, A., Acta Metall. Sin. (Engl. Lett.), 2017, vol. 30, no. 4, p.306.CrossRefGoogle Scholar
  72. 72.
    Farshad, F.F., et al., Society of Petroleum Engineers.Google Scholar
  73. 73.
    Souissi, N. and Triki, E., Corros. Sci., 2008, vol. 50, no. 1, p.231.CrossRefGoogle Scholar
  74. 74.
    Gu, T., et al. Corros. Sci., 2015, vol. 90, p.118.CrossRefGoogle Scholar
  75. 75.
    Goh, K.-H., Lim, T.-T., and Chui, P.-C., Corros. Sci., 2008, vol. 50, no. 4, p.918.CrossRefGoogle Scholar
  76. 76.
    Tao, D., Chen, G., and Parekh, B., Corrosion, 2004, vol. 60, no. 11, p. 1072.CrossRefGoogle Scholar
  77. 77.
    Gokhale, S. and Ellis, S., Society of Petroleum Engineers.Google Scholar
  78. 78.
    Hu, J.Y., et al., Mater. Corros., 2015, vol. 66, no. 4, p.396.CrossRefGoogle Scholar
  79. 79.
    Noor, E.A. and Al-Moubaraki, A.H., Int. J. Electrochem. Sci., 2008, vol. 3, no. 1, p.806.Google Scholar
  80. 80.
    Chin, R.J. and Nobe, K., J. Electrochem. Soc., 1972, vol. 119, no. 11, p. 1457.CrossRefGoogle Scholar
  81. 81.
    MacFarlane, D.R. and Smedley, S.I., J. Electrochem. Soc., 1986, vol. 133, no. 11, p. 2240.CrossRefGoogle Scholar
  82. 82.
    Uhlig, H.H. and King, C., J. Electrochem. Soc., 1972, vol. 119, no. 12, p.327.CrossRefGoogle Scholar
  83. 83.
    Ashassi-Sorkhabi, H. and Seifzadeh, D., Int. J. Electrochem. Sci., 2006, vol. 1, no. 1, p.92.Google Scholar
  84. 84.
    Imamura, T., et al., Carbon, 1978, vol. 16, no. 6, p.481.CrossRefGoogle Scholar
  85. 85.
    Cai, R., et al., J. Mol. Struct., 2009, vol. 938, no. 1, p.15.CrossRefGoogle Scholar
  86. 86.
    Hosoda, H., et al., J. Phys. Chem. A, 2004, vol. 108, no. 9, p. 1461.CrossRefGoogle Scholar
  87. 87.
    Roy, R.K., Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement, New York: John Wiley and Sons, 2001.Google Scholar
  88. 88.
    Momeni, M., Moayed, M.H., and Davoodi, A., Corros. Sci., 2010, vol. 52, no. 8, p. 2653.CrossRefGoogle Scholar
  89. 89.
    Salehuddin, F., et al., Proc. 3rd Int. Conference on Fundamental and Applied Sciences (ICFAS 2014): Innovative Research in Applied Sciences for a Sustainable Future, Kuala Lumpur, Melville, New York: AIP Publ., 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Hashemizadeh
    • 1
  • M. J. Ameri
    • 1
  • B. Aminshahidi
    • 1
  • M. Gholizadeh
    • 2
  1. 1.Department of Petroleum EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Department of Chemistry, Faculty of ScienceFerdowsi University of MashhadMashhadIran

Personalised recommendations