Advertisement

A New Tetrafluorene-Substituted Copper(II) Porphyrinate as a Promising Phosphorescent Temperature Sensor

  • A. Yu. Chernyad’ev
  • V. A. Kotenev
  • A. Yu. Tsivadze
New Substances, Materials and Coatings

Abstract

A new tetrafluorene-substituted copper(II) porphyrinate (CuTFP) with intense phosphorescent glow in the red spectral region is obtained. It is found that the phosphorescence lifetime of CuTFP in a polystyrene matrix changes significantly when the sample is cooled (5 μs at 25°C and 344 μs at–196°C), while the intensity of phosphorescence in the same temperature range changes only 8.1-fold. The dependence of variation of the CuTFP lifetime in polystyrene on the temperature is analyzed. It is found that the lifetime changes little at positive temperatures centigrade, while lifetime variation in the negative temperature range is very significant, which allows considering the new material as a promising phosphorescent sensor for measurement of low temperatures, e.g., under Arctic conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Paul-Roth, C., Rault-Berthelot, J., and Simonneaux, G., Tetrahedron, 2004, vol. 60, p. 12169.CrossRefGoogle Scholar
  2. 2.
    Poriel, C., Ferrand, Y., Le Maux, P., Rault-Berthelot, J., and Simonneaux, G., Tetrahedron Lett., 2003, vol. 44, p. 1759.CrossRefGoogle Scholar
  3. 3.
    Poriel, C., Ferrand, Y., Le Maux, P., Rault-Berthelot, J., and Simonneaux, G., Chem. Commun., 2003, vol. 18, p. 2308.CrossRefGoogle Scholar
  4. 4.
    Simonneaux, G., Galardon, E., Paul-Roth, C., Gulea, M., and Masson, S., J. Organomet. Chem., 2001, vols. 617–618, p.360.CrossRefGoogle Scholar
  5. 5.
    Paul-Roth, C. and Simonneaux, G., Tetrahedron Lett., 2006, vol. 47, p. 3275.CrossRefGoogle Scholar
  6. 6.
    Solov’ev, K.N. and Borisevich, E.A., Usp. Fiz. Nauk, 2005, vol. 175, no. 3, p.247.CrossRefGoogle Scholar
  7. 7.
    Drouet, S., Paul-Roth, C., and Fattori, V., New J. Chem., 2011, vol. 35, p.438.CrossRefGoogle Scholar
  8. 8.
    Raghu, C., Rogers, L., and Wanklyn, A., Inorg. Chem., 2004, vol. 43, p. 6969.CrossRefGoogle Scholar
  9. 9.
    Askarov, K.A., Berezin, B.D., Evstigneeva, R.P., et al., Porfiriny: struktura, svoistva, sintez (Porphyrins: Structure, Properties, Synthesis), Moscow: Nauka, 1985.Google Scholar
  10. 10.
    Gradyushko, T. and Tsvirko, M.P., Opt. Spektrosk., 1971, vol. 21, p.548.Google Scholar
  11. 11.
    Peng, H. and Stich, M., Adv. Mater., 2010, vol. 22, p.716.CrossRefGoogle Scholar
  12. 12.
    Zelelov, B. and Khalil, G., Sens. Actuators, B, 2003, vol. 96, p.304.CrossRefGoogle Scholar
  13. 13.
    Tsvirko, M., Tkaczyk, S., Kozak, M., and Kalota, B., Funct. Mater., 2013, vol. 20, p.127.CrossRefGoogle Scholar
  14. 14.
    Lakowicz, J.R., Principles of Fluorescence Spectroscopy, New York, London: Plenum Press, 1983.CrossRefGoogle Scholar
  15. 15.
    Gordon, A.J. and Ford, R.A., The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References, New York: John Wiley and Sons, 1972.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Yu. Chernyad’ev
    • 1
  • V. A. Kotenev
    • 1
  • A. Yu. Tsivadze
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations