Advertisement

X-Ray Studies of Conformational Transformations in the Composition of Nanofiltration Films

  • S. I. Lazarev
  • Yu. M. Golovin
  • O. A. Kovaleva
  • V. N. Kholodilin
  • I. V. Khorokhorina
Nanoscale and Nanostructured Materials and Coatings
  • 11 Downloads

Abstract

Conformational transformations in the structure of the surface layer and the substrate of initial and working nanofiltration films have been investigated in this work using large-angle X-ray scattering. It has been determined that the mechanical load caused by excess pressure corresponding to 1.5 MPa in the case of OFAM-K porous-composition film has resulted in conformational changes of Phenylon C-4 macromolecules in crystal and amorphous intercrystallite phases; in this case, the calculated degrees of crystallinity have decreased from 49 to 36%. It has been noted that there is the polymorphous rearrangement of the crystal phase with the change of the sizes of crystal cell toward the crystal axis (c) and an increase in the crystallinity from 44 to 55% in the working specimen of the OPMN-P-composition nanofiltration film; in this case, the amorphous phase opens. A full calculation of the radial-distribution function of the atoms of initial and working films has been carried out, which confirms that there is rearrangement of lattice cells due to the increase in atomic distance.

Keywords

conformational transformations composition nanofiltration film surface crystallinity amorphism radial-distribution function hydrodynamic permeability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, K., Abdalla, A., Khaleel, M., et al., Desalination, 2017, vol. 401, p.190.CrossRefGoogle Scholar
  2. 2.
    Gupta, S.K., Singh, P., and Kumar, R., Radiat. Eff. Defects Solids, 2014, vol. 169, no. 8, p.679.CrossRefGoogle Scholar
  3. 3.
    Li, W., Lou, L., Hai, Yu., et al., RSC Adv., 2015, vol. 5, no. 67, p. 54125.CrossRefGoogle Scholar
  4. 4.
    Shaffer, D.L., Tousley, M.E., and Elimelech, M., J. Membr. Sci., 2017, vol. 525, p.249.CrossRefGoogle Scholar
  5. 5.
    Aslamazova, T.R., Kotenev, V.A., Zolotarevskii, V.I., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 5, p.572.CrossRefGoogle Scholar
  6. 6.
    Wu, S., Qin, X., and Li, M., J. Ind. Text., 2014, vol. 44, no. 1, p.85.CrossRefGoogle Scholar
  7. 7.
    Sun, Z. and Chen, F., Int. J. Biol. Macromol., 2016, vol. 96, p.143.CrossRefGoogle Scholar
  8. 8.
    Velu, S., Rambabu, K., and Muruganandam, L., Int. J. ChemTech Res., 2014, vol. 6, no. 1, p.565.Google Scholar
  9. 9.
    Ridgway, H.F., Orbell, G., and Gray, S., J. Membr. Sci., 2017, vol. 524, p.436.CrossRefGoogle Scholar
  10. 10.
    Drazevic, E., Kosutic, K., and Freger, V., Water Res., 2014, vol. 49, p.444.CrossRefGoogle Scholar
  11. 11.
    Yan, F., Chen, H., Lü, Y., et al., J. Membr. Sci., 2016, vol. 513, p.108.CrossRefGoogle Scholar
  12. 12.
    Bocahut, A., Delannoy, J.Y., Vergelati, C., and Mazeau, K., Cellulose, 2014, vol. 21, p. 3897.CrossRefGoogle Scholar
  13. 13.
    Myronchuk, V.G., Kucheruk, D.D., Zmievskii, Yu.G., et al., Pet. Chem., 2013, vol. 53, no. 7. p.439.CrossRefGoogle Scholar
  14. 14.
    Kovaleva, O.A. and Kovalev, S.V., Pet. Chem., 2017, vol. 57, no. 6, p.542.CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Bonn, A.I., Dzyubenko, V.G., and Shishova, I.I., Vysokomol. Soedin., Ser. B, 1993, vol. 35, no. 7, p.922.Google Scholar
  17. 17.
    Kovalev, S.V., Membr. Membr. Tekhnol., 2013, no. 191, p.191.Google Scholar
  18. 18.
    Azarov, V.I., Burov, A.V., and Obolenskaya, A.V., Khimiya drevesiny i sinteticheskikh polimerov. Uchebnik dlya vuzov (Chemistry of Wood and Synthetic Polymers. Students’ Book for Institutions of Higher Education), St. Petersburg: St. Petersburg State Forest Technical Univ. under Name of S.M. Kirov, 1999.Google Scholar
  19. 19.
    Polikarpov, V.M., Doctoral Sci. (Chem.) Dissertation, Moscow: A. V. Topchiev Institute of Petrochemical Synthesis Russ. Acad. Sci., 2003.Google Scholar
  20. 20.
    Dupuis M., Devanathan R., Glezakou V., and Venkatnathan A. https://doi.org/www.hydrogen.energy.gov/pdfs/review07/bes_6_dupuis.pdf.
  21. 21.
    Shen, M., Keten, S., and Lueptow, R., J. Membr. Sci., 2016, vol. 509, p.36.CrossRefGoogle Scholar
  22. 22.
    Fedotov, Yu.A. and Smirnova, N.N., Plast. Massy, 2008, no. 18, p.18.Google Scholar
  23. 23.
    Arisova, V.N., Struktura i svoistva KM. Uchebnoe posobie (Structure and Properties of KM. Students’ Book), Volgograd: Volgograd State Technical Univ., 2008.Google Scholar
  24. 24.
    Radulovic, J., Sci. Tech. Rev., 2005, vol. 55, nos. 3–4, p.21.Google Scholar
  25. 25.
    Tuigiev, Sh., Ginzburg, B.M., Osava, E., et al., Dokl. Akad. Nauk Resp. Tadzh., 2008, vol. 51, no. 3, p. 208.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. I. Lazarev
    • 1
  • Yu. M. Golovin
    • 1
  • O. A. Kovaleva
    • 1
  • V. N. Kholodilin
    • 1
  • I. V. Khorokhorina
    • 1
  1. 1.Tambov State Technical UniversityTambovRussia

Personalised recommendations