Advertisement

An IR Spectroscopic Study of the Effect of Gamma Radiation on the Nano-ZrO2 + Nano-SiO2 + H2O Systems

  • T. N. Agaev
  • N. N. Gadzhieva
  • S. Z. Melikova
  • G. T. Imanova
  • I. A. Faradzh-zade
Nanoscale and Nanostructured Materials and Coatings

Abstract

Using the method of IR Fourier-transform spectroscopy, the radiation decomposition of water in the nano-ZrO2 + nano-SiO2 + H2O system at room temperature (T = 300 K) under the influence of γ-quanta is studied. It is shown that the adsorption of water by the zirconium and silicon nanooxides proceeds by the molecular and dissociative mechanisms. The following intermediate active products of the radiation-heterogeneous decomposition of water are registered: Zr and Si hydrides, and hydroxyl OH groups. It is shown that a change in the ratio of the ZrO2 and SiO2 nanopowders gives rise to a change in the surface profile and in the radiation-chemical yield of molecular hydrogen.

Keywords

zirconium and silicon nanooxides water radiation decomposition γ-quanta IR Fourier-transform spectroscopy microphotography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miyata, H., Fuji, K., Inui, S., and Kuvakova, Y., Appl. Spectrosc., 1986, vol. 40, no. 8, p. 1177.CrossRefGoogle Scholar
  2. 2.
    Garibov, A.A., Agaev, T.N., Imanova, G.T., et al., High Energy Chem., 2014, vol. 48, no. 3, p.239.CrossRefGoogle Scholar
  3. 3.
    Garibov, A.A., Gezalov, Kh.B., and Velibekova, G.Z., Khim. Vys. Energ., 1987, vol. 21, no. 6, p.505.Google Scholar
  4. 4.
    Pikaev, A.K., Dozimetriya v radiatsionnoi khimii (Dosimetry for Radiation Chemistry), Moscow: Nauka, 1975, p.136.Google Scholar
  5. 5.
    Seino, S., Fujimoto, R., and Yamamoto, T.A., Mater. Res. Soc. Symp. Proc., 1999, vol. 608, p.505.CrossRefGoogle Scholar
  6. 6.
    Sutoshi Seino, Takao A. Yamamoto, Ryosuke Fujimoto, J. Nucl. Sci. Technol., 1989, vol. 23, no. 5, p.633.Google Scholar
  7. 7.
    Cesal, A., Hauta, O., and Macovei, A., Rev. Roum. Chim., 2008, vol. 53, no. 9, p.875.Google Scholar
  8. 8.
    Petrik, N.G., Alexandrov, A.B., and Vall, A.I., J. Phys. Chem. B, 2001, vol. 105, p. 5935.CrossRefGoogle Scholar
  9. 9.
    Ranjan Sahu, H. and Ranga Rao, G., Bull. Mater. Sci., 2000, vol. 23, no. 5, p.349.CrossRefGoogle Scholar
  10. 10.
    Perez-Luna, A.G., Martinez-Hemandez, A.L., Martinez-Barrera, G., and Velasco-Santes, C., Adv. Mater. Lett., 2016, vol. 7, no. 2, p.156.CrossRefGoogle Scholar
  11. 11.
    Davydov, A.A., IK-spektroskopiya v khimii poverkhnosti okislov (Infrared Spectroscopy for Chemistry of Oxides’ Surfaces), Novosibirsk: Nauka, 1984, p.27.Google Scholar
  12. 12.
    Gezalov, Kh.B., Garibov, A.A., Kasumov, R.D., et al., Khim. Vys. Energ., 1989, vol. 23, no. 5, p.472.Google Scholar
  13. 13.
    Kharlamov, A.N., Zubareva, N.A., and Lunina, E.V., Vestn. Mosk. Univ., Ser. 2: Khim., 1998, vol. 39, no. 1, p. 29.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. N. Agaev
    • 1
  • N. N. Gadzhieva
    • 1
  • S. Z. Melikova
    • 1
  • G. T. Imanova
    • 1
  • I. A. Faradzh-zade
    • 1
  1. 1.Institute of Radiation ProblemsAzerbaijan National Academy of SciencesBakuAzerbaijan

Personalised recommendations