Advertisement

Synthesis and Characterization of Hydroxyapatite/TiO2 Coatings on the β-Type Titanium Alloys with Different Sintering Parameters using Sol-Gel Method

  • B. DikiciEmail author
  • M. Niinomi
  • M. Topuz
  • Y. Say
  • B. Aksakal
  • H. Yilmazer
  • M. Nakai
New Substances, Materials and Coatings

Abstract

In this study, hydroxyapatite (HA) based composite films were successfully syntheses on the β-type Ti29Nb13Ta4.6Zr (TNTZ). The solutionized TNTZ substrates coated with HA and HA/Titania (TiO2) bioactive composite coatings by sol-gel method under various sintering parameters related to sintering temperatures and heating ramp rates. Microstructural observations of the coatings revealed that apatite was formed on the substrates. The hardness values of the coatings increase with increasing both the sintering temperature and the TiO2 concentration in the coatings layer. However, it was found that the heating ramp rate of the sintering was not affecting the hardness values so much. Also, the hardness values of the HA/TiO2 composite coatings at all sintering temperatures were higher than only HA coated TNTZ samples due to the existence TiO2 phases in the HA matrix. Results indicating that the doping of HA with TiO2, improve the physical consistency between the coating layer and the substrates and provide a better inter-particle bonding due to the existence TiO2 phases in the HA.

Keywords

hydroxyapatite TNTZ sol-gel bioactive coating sintering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Han, J.Y., Yu, Z.T., and Zhou, L., Appl. Surf. Sci., 2008, vol. 255, p. 455.CrossRefGoogle Scholar
  2. 2.
    Kim, H.-W., Koh, Y.-H., Li, L.-H., et al., Biomaterials, 2004, vol. 25, p. 2533.CrossRefGoogle Scholar
  3. 3.
    Lee, S.-H., Kim, H.-W., Lee, E.-J., et al., J. Biomater. Appl., 2006, vol. 20, p. 195.CrossRefGoogle Scholar
  4. 4.
    Im, K.H., Lee, S.B., Kim, K.M., and Lee, Y.K., Surf. Coat. Technol., 2007, vol. 202, p. 1135.CrossRefGoogle Scholar
  5. 5.
    Enayati-Jazi, M., Solati-Hashjin, M., Nemati, A., and Bakhshi, F., Superlattices Microstruct., 2012, vol. 51, p. 877.CrossRefGoogle Scholar
  6. 6.
    He, G., Hu, J., Wei, S.C., et al., Appl. Surf. Sci., 2008, vol. 255, p. 442.CrossRefGoogle Scholar
  7. 7.
    Kim, H.W., Kim, H.E., Salih, V., and Knowles, J.C., J. Biomed. Mater. Res., Part B, 2005, vol. 72, p. 1.Google Scholar
  8. 8.
    Li, P., De Groot, K., and Kokubo, T., J. Sol-Gel Sci. Technol., 1996, vol. 7, p. 27.CrossRefGoogle Scholar
  9. 9.
    Li, Z., Yang, X., Guo, H., et al., J. Nanopart. Res., 2012, vol. 14, p. 1145.CrossRefGoogle Scholar
  10. 10.
    Milella, E., Cosentino, F., Licciulli, A., and Massaro, C., Biomaterials, 2001, vol. 22, p. 1425.CrossRefGoogle Scholar
  11. 11.
    Ramires, P., Romito, A., Cosentino, F., and Milella, E., Biomaterials, 2001, vol. 22, p. 1467.CrossRefGoogle Scholar
  12. 12.
    Morks, M.F., Mater. Lett., 2010, vol. 64, p. 1968.CrossRefGoogle Scholar
  13. 13.
    Lu, Y.P., Sen Li, M., Li, S.T., et al., Biomaterials, 2004, vol. 25, p. 4393.CrossRefGoogle Scholar
  14. 14.
    Ivanova, A.A., Surmenev, R.A., Surmeneva, M.A., et al., Appl. Surf. Sci., 2015, vol. 329, p. 212.CrossRefGoogle Scholar
  15. 15.
    Chen, W., Liu, Y., Courtney, H.S., et al., Biomaterials, 2006, vol. 27, p. 5512.CrossRefGoogle Scholar
  16. 16.
    Ding, S.-J., Biomaterials, 2003, vol. 24, p. 4233.CrossRefGoogle Scholar
  17. 17.
    Araghi, A. and Hadianfard, M.J., Ceram. Int., 2015, vol. 41, p. 12668.CrossRefGoogle Scholar
  18. 18.
    Kim, H.J., Jeong, Y.H., Choe, H.C., and Brantley, W.A., Thin Solid Films, 2014, vol. 572, p. 119.CrossRefGoogle Scholar
  19. 19.
    Bakin, B., Koc Delice, T., Tiric, U., et al., Surf. Coat. Technol., 2015, vol. 301, p. 29.CrossRefGoogle Scholar
  20. 20.
    He, D.H., Wang, P., Liu, P., et al., Surf. Coat. Technol., 2015, vol. 277, p. 203.CrossRefGoogle Scholar
  21. 21.
    Qiu, D., Yang, L., Yin, Y., and Wang, A., Surf. Coat. Technol., 2011, vol. 205, p. 3280.CrossRefGoogle Scholar
  22. 22.
    Wen, C., Xu, W., Hu, W., and Hodgson, P., Acta Biomater., 2007, vol. 3, p. 403.CrossRefGoogle Scholar
  23. 23.
    Peltola, T., Putsi, M., Rahiala, H., et al., J. Biomed. Mater. Res., 1998, vol. 41, p. 504.CrossRefGoogle Scholar
  24. 24.
    Uhlmann, D., Suratwala, T., Davidson, K., et al., J. Non-Cryst. Solids, 1997, vol. 218, p. 113.CrossRefGoogle Scholar
  25. 25.
    Mavis, B. and Taş, A.C., Society, 2000, vol. 91, p. 989.Google Scholar
  26. 26.
    Ramesh, S., Tan, C.Y., Tolouei, R., et al., Mater. Des., 2012, vol. 34, p. 148.CrossRefGoogle Scholar
  27. 27.
    Barralet, J.E., Best, S.M., and Bonfield, W., J. Mater. Sci.: Mater. Med., 2000, vol. 11, p. 719.Google Scholar
  28. 28.
    Herliansyah, M., Hamdi, M., Ide-Ektessabi, A., et al., Mater. Sci. Eng., C, 2009, vol. 29, p. 1674.CrossRefGoogle Scholar
  29. 29.
    Muralithran, G. and Ramesh, S., Ceram. Int., 2000, vol. 26, pp. 221–230.CrossRefGoogle Scholar
  30. 30.
    Roop Kumar, R. and Wang, M., Mater. Lett., 2002, vol. 55, p. 133.CrossRefGoogle Scholar
  31. 31.
    Xiao, X.F., Liu, R.F., and Zheng, Y.Z., Surf. Coat. Technol., 2006, vol. 200, p. 4406.CrossRefGoogle Scholar
  32. 32.
    Balamurugan, A., Balossier, G., and Kannan, S., Mater. Sci. Eng., C, 2007, vol. 27, p. 162.CrossRefGoogle Scholar
  33. 33.
    Prokopiev, O. and Sevostianov, I., Mater. Sci. Eng., A, 2006, vol. 431, p. 218.CrossRefGoogle Scholar
  34. 34.
    Sonmez, S., Aksakal, B., and Dikici, B., J. Sol-Gel Sci. Technol., 2012, vol. 63, p. 510.CrossRefGoogle Scholar
  35. 35.
    Han, J.Y., Yu, Z.T., and Zhou, L., Appl. Surf. Sci., 2008, vol. 255, p. 455.CrossRefGoogle Scholar
  36. 36.
    Montenero, A., Gnappi, G., Ferrari, F., et al., J. Mater. Sci., 2000, vol. 35, p. 2791.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • B. Dikici
    • 1
    Email author
  • M. Niinomi
    • 2
  • M. Topuz
    • 3
  • Y. Say
    • 4
  • B. Aksakal
    • 5
  • H. Yilmazer
    • 5
  • M. Nakai
    • 6
  1. 1.Ataturk UniversityDept. of Metallurgical and Materials EngineeringErzurumTurkey
  2. 2.Tohoku UniversityInstitute for Materials ResearchSendai, MiyagiJapan
  3. 3.Yuzuncu Yil UniversityDepartment of Mechanical EngineeringVanTurkey
  4. 4.Munzur UniversityMetallurgical and Materials EngineeringTunceliTurkey
  5. 5.Yildiz Technical UniversityMaterials Science and EngineeringIstanbulTurkey
  6. 6.Kindai University, Science and EngineeringMechanical EngineeringOsakaJapan

Personalised recommendations