Advertisement

A comparative study of the structure and chemical properties of nanocomposite TiCaPCON-Ag coatings

  • A. N. Sheveyko
  • I. V. Sukhorukova
  • Ph. V. Kiryukhantsev-Korneev
  • D. V. Shtansky
Nanoscale and Nanostructured Materials and Coatings

Abstract

To induce antibacterial activity in bioactive TiCaPCON coatings, materials have been doped with Ag in a quantity of 0.4–4.0 at %. Silver has been introduced into the coatings via two methods. Coatings with 0.4, 1.2, and 4.0 at % Ag content have been fabricated via simultaneous sputtering of a compositional TiC0.5-Ca3(PO4)2 target, which was obtained via self-propagating high temperature synthesis, and of a metallic Ag target. TiCaPCON-Ag (4.0 at %) coating was also fabricated via ion Ag implantation of preliminarily obtained TiCaPCON. The content and element distribution over the thickness of the coating were studied via glow discharge optical emission spectroscopy (GD-OES). The structure and morphology of the coatings have been probed via scanning electron microscopy. The results showed the formation of Ag particles in both the bulk and on the surface of the coatings, but their size and distribution over the coating thickness are found to depend on both the Ag concentration and method of sputtering of coatings. The effect of substrate temperature on Ag particle distribution in the coating is established. The study of kinetics of Ag dissolution via inductively coupled plasma mass-spectrometry and electrochemical methods has revealed that Ag dissolution rate is defined by the ratio of Ag nanoparticle size to the thickness of an oxide layer on the surface.

Keywords

Passive Film Open Circuit Potential Thin Surface Layer Anodic Current Density Anodic Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simchi, A., Tamjid, E., Pishbin, F., and Boccaccini, A.R., Nanomed.: Nanotechnol., Biol. Med., 2011, vol. 7, pp. 22–39.CrossRefGoogle Scholar
  2. 2.
    Li, B., Liu, X., and Meng, F., Mater. Chem. Phys., 2009, vol. 118, pp. 99–104.CrossRefGoogle Scholar
  3. 3.
    Chen, W., Liu, Y., and Bettenga, C.H.S., Biomaterials, 2006, vol. 27, pp. 5512–5517.CrossRefGoogle Scholar
  4. 4.
    Kotharu, V., Nagumothu, R., and Arumugam, Ch.B., Ceram. Int., 2012, vol. 38, pp. 731–740.CrossRefGoogle Scholar
  5. 5.
    Kelly, P.J., Li H., Benson, P.S., and Whitehead, K.A., Surf. Coat. Technol., 2010, vol. 205, pp. 1606–1610.CrossRefGoogle Scholar
  6. 6.
    Sánchez-López, J.C., Abad, M.D., Carvalho, I., et al., Surf. Coat. Technol., 2012, vol. 206, pp. 2192–2198.CrossRefGoogle Scholar
  7. 7.
    Zheng, Y.F., Zhang, B.B., Wang, B.L., and Wang, Y.B., Acta Biomater., 2011, vol. 7, pp. 2758–2767.CrossRefGoogle Scholar
  8. 8.
    Massè, A., Bruno, A., and Bosetti, M., J. Biomed. Mater. Res., 2000, vol. 53, pp. 600–604.CrossRefGoogle Scholar
  9. 9.
    Kraft, C.N., Hansis, M., and Arens, S., J. Biomed. Mater. Res., 2000, vol. 49, pp. 192–199.CrossRefGoogle Scholar
  10. 10.
    Huang, H., Chang, Y., Lai, M., and Lin, C., Surf. Coat. Technol., 2010, vol. 205, pp. 1636–1641.CrossRefGoogle Scholar
  11. 11.
    Stelzig, S.H., Menneking, C., Hoffmann, M.S., et al., Eur. Polymer J., 2011, vol. 47, pp. 662–667.CrossRefGoogle Scholar
  12. 12.
    Sondi, I. and Salopek-Sondi, B., J. Colloid Interface Sci., 2004, vol. 275, pp. 177–182.CrossRefGoogle Scholar
  13. 13.
    Rai, M., Yadav, A., and Gade, A., Biotechnol. Adv., 2009, vol. 27, pp. 76–83.CrossRefGoogle Scholar
  14. 14.
    Anwar, H.A., Aldam, C.H., Visuwanathan, S., and Hart, A.J., J. Bone Jt. Surg., Br. Vol., 2007, vol. 89, pp. 1655–1659.CrossRefGoogle Scholar
  15. 15.
    Mulligan, C.P., Papi, P.A., and Gall, D., Thin Solid Film, 2012, vol. 520, p. 6774.CrossRefGoogle Scholar
  16. 16.
    Muratore, C., Hu, J.J., and Voevodin, A.A., Surf. Coat. Technol., 2009, vol. 203, p. 957.CrossRefGoogle Scholar
  17. 17.
    García, A.J. and Reyes, C.D., J. Dental Res., 2005, vol. 84, pp. 407–413.CrossRefGoogle Scholar
  18. 18.
    Marco, F., Milena, F., Gianluca, G., and Vittoria, O., Micron, 2005, vol. 36, p. 630.CrossRefGoogle Scholar
  19. 19.
    Anselme, K. and Bigerelle, M., Acta Biomater., 2005, vol. 1, p. 211.CrossRefGoogle Scholar
  20. 20.
    Khang, D., Lu, J., and Yao, C., Biomaterials, 2008, vol. 29, p. 970.CrossRefGoogle Scholar
  21. 21.
    Zinger, O., Zhao, G., and Schwartz, Z., Biomaterials, 2005, vol. 206, p. 1837.CrossRefGoogle Scholar
  22. 22.
    Shtansky, D.V., Batenina, I.V., Yadroitsev, I.A., et al., Surf. Coat. Technol., 2012, vol. 208, pp. 14–23.CrossRefGoogle Scholar
  23. 23.
    Shtansky, D.V., Gloushankova, N.A., Bashkova, I.A., et al., Biomaterials, 2006, vol. 27, pp. 3519–3531.Google Scholar
  24. 24.
    Shtansky, D.V., Grigoryan, A.S., Toporkova, A.K., et al., Surf. Coat. Technol., 2011, vol. 206, pp. 1188–1195.CrossRefGoogle Scholar
  25. 25.
    Shtansky, D.V., Gloushankova, N.A., Sheveyko, A.N., et al., Surf. Coat. Technol., 2010, vol. 205, pp. 728–739.CrossRefGoogle Scholar
  26. 26.
    Shtansky, D.V., Gloushankova, N.A., Bashkova, I.A., et al., Surf. Coat. Technol., 2006, vol. 201, pp. 4111–4118.CrossRefGoogle Scholar
  27. 27.
    Shtansky, D.V., Levashov, E.A., and Glushankova, N.A., Surf. Coat. Technol., 2004, vol. 182, pp. 101–111.CrossRefGoogle Scholar
  28. 28.
    Kiryukhantsev-Korneev, Ph.V., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 5, pp. 585–590.CrossRefGoogle Scholar
  29. 29.
    Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V., Maksimov, Yu.M., and Yukhvid, V.I., Perspektivnye materially i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza (Prospective Materials and Technologies of Self-Propagating High-Temperature Synthesis), Moscow: Nats. Issled. Tekhnol. Univ., 2011, p. 377.Google Scholar
  30. 30.
    Shtansky, D.V., Batenina, I.V., Kiryukhantsev-Korneev, Ph.V., et al., Appl. Surf. Sci., 2013, vol. 285, pp. 331–343.CrossRefGoogle Scholar
  31. 31.
    Sheveyko, A.N., Kiryukhantsev-Korneev, P.V., and Shtansky, D.V., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 3, pp. 292–298.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. N. Sheveyko
    • 1
  • I. V. Sukhorukova
    • 1
  • Ph. V. Kiryukhantsev-Korneev
    • 1
  • D. V. Shtansky
    • 1
  1. 1.National University of Science and Technology “MISIS”MoscowRussia

Personalised recommendations