The influence of some 4-methylcoumarins on the electrodeposition and characteristics of zinc coating

  • I. Semić
  • S. Ćavar Zeljković
Physicochemical Problems of Materials Protection


This work presents investigation of the influence of some 4-methylcoumarins on the physicochemical characteristics of zinc coatings such as porosity, thickness, and resistance to corrosion. Six 4-methylcoumarins have been added to zinc solutions in different concentrations, and layer resistance to corrosion in 3% NaCl was evaluated by potentiodynamic methods. Thermodynamic and kinetic properties of zinc coatings as well as the stability of the passive layer coatings were determined at high anodic polarization. The interaction between coumarins and zinc has been investigated by IR spectroscopy. The corrosion resistance of zinc deposits was improved by use of coumarins as additives, especially the 7-hydroxy-4-methylcoumarin.


Coumarin Current Efficiency Zinc Coating Xylenol Orange Zinc Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Youssef Kh.M.S., Koch, C.C., and Fedkiw, P.S., Corrosion Sci., 2004, vol. 46, p. 51.CrossRefGoogle Scholar
  2. 2.
    The Properties of Electrodeposited Metals and Alloys, Safranek, W.H., Ed., Florida: AESF, 1986.Google Scholar
  3. 3.
    Ahin, M., Gece, G., Karci, F., and Bilgig, S., J. Appl. Electrochem., 2008, vol. 38, p. 809.CrossRefGoogle Scholar
  4. 4.
    Gece, G., Corrosion Sci., 2008, vol. 50, p. 2981.CrossRefGoogle Scholar
  5. 5.
    Broussard, G., Bramantit, O., and Marchese, F.M., Occup. Med., 1997, vol. 47, p. 337.CrossRefGoogle Scholar
  6. 6.
    Dobryszycki, J. and Biallozor, S., Corrosion Sci., 2001, vol. 43, p. 1309.CrossRefGoogle Scholar
  7. 7.
    Mouanga, M., Ricq, L., Douglade, G., et al., Surf. Coat. Technol., 2006, vol. 201, p. 762.CrossRefGoogle Scholar
  8. 8.
    Mouanga, M., Ricq, L., Douglade, J., and Berçot, P., Corrosion Sci., 2009, vol. 51, p. 690.CrossRefGoogle Scholar
  9. 9.
    Mouanga, M., Ricq, L., and Bergot, P., Coat. Technol., 2008, vol. 202, p. 1645.CrossRefGoogle Scholar
  10. 10.
    Mouanga, M., Ricq, L., Ismaili, L., et al., Surf. Coat. Technol., 2007, vol. 201, p. 7143.CrossRefGoogle Scholar
  11. 11.
    Ćavar, S. and Kovač, F., Int. J. Chem. Kin., 2009, vol. 41, p. 414.CrossRefGoogle Scholar
  12. 12.
    Ćavar, S. and Kovač, F., J. Heterocyc. Chem., 2011, vol. 49, p. 261.Google Scholar
  13. 13.
    Loto, C.A., Asian J. Appl. Sci., 2012, vol. 5, p. 314.CrossRefGoogle Scholar
  14. 14.
    Študlar, K. and Janoušek, I., Talanta., 1961, vol. 8, p. 203.CrossRefGoogle Scholar
  15. 15.
    Lacourcelles, L., Traité de Galvanotechnique, Galvaconseils edition, 1996.Google Scholar
  16. 16.
    Magalhaes, A.C., Da Silva, R.C.B., Cassiano, N.M., and Capelato, M.D., Bull. Electrochem., 2002, vol. 18, p. 193.Google Scholar
  17. 17.
    Ciszewski, A., Posluszny, S., Milczarek, G., and Baraniak, M., Surf. Coat. Technol., 2004, vol. 183, p. 127.CrossRefGoogle Scholar
  18. 18.
    Schlesinger, M. and Paunovic, M., Modern Electroplating, N.Y.: John Wiley and Sons, 2000.Google Scholar
  19. 19.
    Rogers, G.T. and Taylor, K.J., Electrochim. Acta, 1968, vol. 13, p. 109.CrossRefGoogle Scholar
  20. 20.
    Macheras, J., Vourous, D., Kollia, C., and Spyrellis, N., Trans. Inst. Met. Finish., 1996, vol. 74, p. 55.Google Scholar
  21. 21.
    Kostova, I.P., Manolov, I.I., Nicolova, I.N., and Danchev, N.D., II Farmaco, 2001, vol. 56, p. 707.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Eidgenössische Technische Hochschule ZürichLaboratory for Organic ChemistryZürichSwitzerland
  2. 2.Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations