Planar supramolecular systems based on geometrical isomers of crown-containing oligothiophenes

  • S. L. SelektorEmail author
  • O. A. Fedorova
  • E. V. Lukovskaya
  • N. A. Tarasova
  • O. A. Raitman
  • A. V. Anisimov
  • Yu. V. Fedorov
  • V. V. Arslanov
Molecular and Supramolecular Structures at the Interfaces


The properties of ultrathin films of two geometric isomers of oligothiophene derivatives containing two crowned styryl fragments in 2- (I) or 3- (II) positions of thiophene rings (Fig. 1) are studied in this work. The ability of these compounds to form stable monolayers at the air/water interface is shown. The structural organization of crown-substituted oligothiophenes in monolayers is determined by the π-π-stacking interaction of hydrophobic styrylthiophene fragments and interaction of hydrophilic macrocycles with the water subphase. Analysis of ultrathin film physicochemical characteristics has shown that the difference in the structure of oligothiophene molecules leads to the formation of distinct monolayer architectures with various electrochemical and optical characteristics. Two types of aggregates (H and J) are generated in monolayers formed from different geometrical isomers at the air/water interface. The effect of barium cation presence in the subphase on the oligomer aggregation in monolayer is discussed. The phase diagrams characterizing the behavior from two-dimensional mixtures of studied crown-substituted oligothiophenes and amphiphilic spreader are plotted basing on compression isotherms accompanied by absorbance and fluorescence spectra of monolayers of different composition. The ability to fine tune the emitted radiation parameters is demonstrated. The obtained results show the efficiency of application of geometrical isomers for investigation of the fundamental “structure-property” ratio of planar supramolecular systems, which is important for organic optics and electronics.


Surface Pressure Crown Ether Compression Isotherm Geometrical Isomer Thiophene Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freek J. M. Hoeben, Pascal Jonkheijm, E. W. Meijer, and Albertus P. H. J. Schenning, Chem. Rev., 2005, 105(4), pp. 1491–1546.CrossRefGoogle Scholar
  2. 2.
    Wang, C., Dong, H., Hu, W., et al., Chem. Rev., 2012, vol. 112, p. 2208.CrossRefGoogle Scholar
  3. 3.
    Wurthner, F., Angew. Chem., Int. Ed. Engl., 2001, vol. 40, p. 1037.CrossRefGoogle Scholar
  4. 4.
    Katz, H., Dodabalapur, V., Torsi, L., et al., Chem. Mater., 1995, vol. 7, p. 2238.CrossRefGoogle Scholar
  5. 5.
    Fichou, D., Dumarcher, V., and Nunzi, J.-M., Opt. Mater., 1999, vol. 12, p. 255.CrossRefGoogle Scholar
  6. 6.
    Huisman, C.L., Huijser, A., Donker, H., et al., Macromolecules, 2004, vol. 37, p. 5557.CrossRefGoogle Scholar
  7. 7.
    Lim, S.-T. and Shin, D.-M., Synth. Met., 2001, vol. 117, p. 229.CrossRefGoogle Scholar
  8. 8.
    Era, M., Yoneda, S., Sano, T., et al., Thin Solid Films, 2003, vol. 438.Google Scholar
  9. 9.
    Loi, M.A., Da, ComoE., Dinelli, F., et al., Nat. Mater, 2005, vol. 4, p. 81.CrossRefGoogle Scholar
  10. 10.
    Sullivan, J.T., Harrison, K.E., Mizzell, J.P., et al., Langmuir, 2000, vol. 16, p. 9797.CrossRefGoogle Scholar
  11. 11.
    Singhal, R., Chaubey, A., Kaneto, K., et al., Biotechnol. Bioeng., 2004, vol. 85, p. 277.CrossRefGoogle Scholar
  12. 12.
    Ochiai, K., Rikukawa, M., and Sanui, K., Chem. Commun., 1999, vol. 867.Google Scholar
  13. 13.
    Dimitrakopolous, C.D. and Malenfant, P.R.L., Adv. Mater., 2002, vol. 14, p. 99.CrossRefGoogle Scholar
  14. 14.
    Gamier, F., Horowitz, G., Peng, X., and Fichou, D., Adv. Mater., 1990, vol. 2, p. 592.CrossRefGoogle Scholar
  15. 15.
    Gamier, F., Hajlaoui, R., Yassar, A., et al., Science, 1994, vol. 1684.Google Scholar
  16. 16.
    Ostoja, P., Guerri, S., Rossini, S., et al., Synth. Met., 1993, vol. 54, p. 447.CrossRefGoogle Scholar
  17. 17.
    Dodabalapur, A., Torsi, L., and Katz, H., Science, 1995, vol. 268, p. 270.CrossRefGoogle Scholar
  18. 18.
    Brabec, C., Dyakonov, V., Parisi, J., et al., Organic photovoltaics concepts and realization, Heidelberg: Springer-Verlag, 2003.CrossRefGoogle Scholar
  19. 19.
    Vannikov, A.V., Ross. Khim. Zh., 2001, vol. 45, no. 5–6, p. 41.Google Scholar
  20. 20.
    Simon, J. and Andre, J.-J., Molecular Semiconductors. Berlin: Springer-Verlag, 1985.Google Scholar
  21. 21.
    Maltsev, E.I., Lypenko, D.A., Brusentseva, M.A., et al., High Energy Chem., 2008, vol. 42, No. 4, p. 67.Google Scholar
  22. 22.
    Braun, D., Mater. Today, 2002, vol. 5, no. 6, p. 32.CrossRefGoogle Scholar
  23. 23.
    Friend, R.H., Gymer, R.W., Holmes, A.B., et al., Nature, 1999, vol. 397, p. 121.CrossRefGoogle Scholar
  24. 24.
    Yurre, T.A., Rudaya, L.I., Klimova, N.V. et al., Semiconductors, 2003, vol. 37, p. 835.Google Scholar
  25. 25.
    Geiger, F., Stoldt, M., Schweizer, H., et al., Adv. Mater., 1993, vol. 5, p. 922.CrossRefGoogle Scholar
  26. 26.
    Uchiyama, K., Akimichi, H., Hotta, S., et al., Synth. Met., 1994, vol. 63, p. 57.CrossRefGoogle Scholar
  27. 27.
    Marks, R., Biscarini, F., Zamboni, R., et al., Europhys. Lett., 1995, vol. 32, p. 523.CrossRefGoogle Scholar
  28. 28.
    Horowitz, G., Delannoy, P., Bouchriha, H., et al., Adv. Mater., 1994, vol. 6, p. 752.CrossRefGoogle Scholar
  29. 29.
    Shirota, Y.J., Mater. Chem, 2000, vol. 10, p. 1.CrossRefGoogle Scholar
  30. 30.
    Mitschke, U. and Bauerle, P., Mater. Chem, 2000, vol. 10, p. 1471.CrossRefGoogle Scholar
  31. 31.
    Jousselme, B., Blanchard, P., Levillain, E., et al., Am. Chem. Soc., 2003, vol. 125, p. 1363.CrossRefGoogle Scholar
  32. 32.
    Otsubo, T., Aso, Y., and Takimiya, K., Mater. Chem, 2002, vol. 12, p. 2565.CrossRefGoogle Scholar
  33. 33.
    Lopez-Cabarcos, E., Retama, J., Sholin, V., et al., Polym. Int., 2007, vol. 56, p. 588.CrossRefGoogle Scholar
  34. 34.
    Yassar, A., Gamier, F., Deloffre, F., et al., Adv. Mater., 1994, vol. 6, p. 660.CrossRefGoogle Scholar
  35. 35.
    Roncali, J., Chem. Rev., 1992, vol. 92, p. 711.CrossRefGoogle Scholar
  36. 36.
    Demeter, D., Blanchard, P., Allain, M., et al., Org. Chem, 2007, vol. 72, p. 5285.CrossRefGoogle Scholar
  37. 37.
    Burrell, K., Chen, J., Collis, G., et al., Synth. Met., 2003, vol. 135–136, p. 97.CrossRefGoogle Scholar
  38. 38.
    Si, P., Chi, Q., Li, Z., et al., Am. Chem. Soc., 2007, vol. 129, p. 3888.CrossRefGoogle Scholar
  39. 39.
    Dinelli, F., Murgia, M., Levy, P., et al., Phys. Rev. Lett., 2004, vol. 92, p. 116802.CrossRefGoogle Scholar
  40. 40.
    Murphy, A.R. and Chang, P.C., Vandyke p. et al., Chem. Mater., 2005, vol. 17, p. 6033.CrossRefGoogle Scholar
  41. 41.
    Marsella, M.J. and Swager, T.M.J., Am. Chem. Soc., 1993, vol. 115, p. 12214.CrossRefGoogle Scholar
  42. 42.
    Reitzel, N., Greve, D., Kjaer, K., et al., J. Am. Chem. Soc., 2000, vol. 122, p. 5788.CrossRefGoogle Scholar
  43. 43.
    Nakahara, H., Fukuda, K., Mobius, D., et al., Phys. Chem., 1986, vol. 90, p. 6144.CrossRefGoogle Scholar
  44. 44.
    McRae, E. and Kasha, M., Chem. Phys., 1958, vol. 28, p. 721.Google Scholar
  45. 45.
    Dimitrakopoulos, C.D. and Mascaro, D.J., IBM J. Res. Dev, 2001, vol. 45, p. 11.CrossRefGoogle Scholar
  46. 46.
    Chen, J., Murphy, A., Esteve, J., et al., Langmuir, 2004, vol. 20, p. 7703.CrossRefGoogle Scholar
  47. 47.
    Ponomarenko, S.A., Borshchev, O.V., Setayesh, S., et al., Organometallics, 2010, vol. 29, p. 4213.CrossRefGoogle Scholar
  48. 48.
    Anokhin, D.V., Defaux, M., Mourran, A., et al., J. Phys. Chem. C, 2012, vol. 116, p. 22727.CrossRefGoogle Scholar
  49. 49.
    Arslanov, V.V., Usp. Khim., 2000, vol. 69, p. 963.CrossRefGoogle Scholar
  50. 50.
    Agina, E.V., Usov, I.A., Borshchev, O.V., et al., Langmuir, 2012, vol. 28, p. 16186.CrossRefGoogle Scholar
  51. 51.
    Sizov, A.S., Agina, E.V., Gholamrezaie, V.V., et al., Appl. Phys. Lett., 2013, vol. 103, p. 4.CrossRefGoogle Scholar
  52. 52.
    Lukovskaya, E., Bobylyova, A., Fedorova, O., et al., Synth. Met., 2007, vol. 157, p. 885.CrossRefGoogle Scholar
  53. 53.
    Lukovskaya, E.V., Bobyleva, A.A., Fedorova, O.A., et al., Russ, Chem. Bull., 2007, vol. 56, p. 932.CrossRefGoogle Scholar
  54. 54.
    Lukovskaya, E.V., Bobyleva, A.A., Fedorova, O.A., et al., Russ, Chem. Bull, 2009, vol. 58, p. 1465.CrossRefGoogle Scholar
  55. 55.
    Lukovskaya, E., Bobylyova, A., Fedorov, Y., et al., Chem. Phys. Chem, 2010, vol. 11, p. 3152.Google Scholar
  56. 56.
    Stuchebryukov, S.D., Selektor, S.L., Silant’eva, D.A., et al., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, p. 189.CrossRefGoogle Scholar
  57. 57.
    Videlot-Ackermann, C., Ackermann, J., Kawamura K. et al., Org. Electron, 2006, vol. 7, p. 465.CrossRefGoogle Scholar
  58. 58.
    Lednev, I.K. and Petty, M.C., Langmuir, 1994, vol. 10, p. 4185.CrossRefGoogle Scholar
  59. 59.
    Lednev, I.K. and Petty, M.C., J. Phys. Chem., 1994, vol. 98, p. 9601.CrossRefGoogle Scholar
  60. 60.
    Wang, Y., Ozaki, Y., and Iriyama, K., Langmuir, 1995, vol. 11, p. 705.CrossRefGoogle Scholar
  61. 61.
    Zhou, M., Liu, H.L., Yang, H.F., et al., Langmuir, 2006, vol. 22, p. 10877.CrossRefGoogle Scholar
  62. 62.
    Mobius, D., Acc. Chem. Res., 1981, vol. 14, p. 63.CrossRefGoogle Scholar
  63. 63.
    Kuhn, H., Mann, B., Bucher, H., et al., Photogr. Sci. Eng., 1967, vol. 11, p. 233.Google Scholar
  64. 64.
    Kuhn, H., Pure Appl. Chem., 1979, vol. 51, p. 341.CrossRefGoogle Scholar
  65. 65.
    Bjornholm, T., Greve, D.R., Reitzel, N., et al., J. Am. Chem. Soc., 1998, vol. 120, p. 7643.CrossRefGoogle Scholar
  66. 66.
    Arslanov, V.V., Gorbunova, Yu.G., Selektor, S.L., et al., Russ, Chem. Bull, 2004, p. 2426.Google Scholar
  67. 67.
    Grauby-Heywang, C., Selektor, S.L., Abraham, E., et al., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, p. 31.CrossRefGoogle Scholar
  68. 68.
    Abraham, E., Selektor, S., Grauby-Heywang, C., and Jonusauskas, G., J. Photochem. Photobiol., vol. 93, p. 44.Google Scholar
  69. 69.
    Lednev, I.K. and Petty, M.C., Adv. Mater. Opt. Electron, 1994, vol. 4, p. 225.CrossRefGoogle Scholar
  70. 70.
    Xia, C., Locklin, J., Youk, J.H., et al., Langmuir, 2002, vol. 18, p. 955.CrossRefGoogle Scholar
  71. 71.
    Turshatov, A.A., Bossi, M.L., Möbius, D., et al., Langmuir, 2006, vol. 22, p. 1571.CrossRefGoogle Scholar
  72. 72.
    Sergeeva, T.I., et al., Colloids and Surfaces A, 2005, vol. 264, p. 207.CrossRefGoogle Scholar
  73. 73.
    Alfimov, M.V., Herald Russ. Acad. Sci., 2003, vol. 73, p. 429.Google Scholar
  74. 74.
    Frederick, M. and Fowkes, J., Phys. Chem., 1963, vol. 67, p. 1982.CrossRefGoogle Scholar
  75. 75.
    Khanova, L.A., Evstefeeva, Y.E., and Krishtalik, L.I., Russ. J. Electrochem, 2003, vol. 39, p. 66.CrossRefGoogle Scholar
  76. 76.
    Selektor S., Fedorova, O. Lukovskaya, E., et al., J. Phys. Chem. B, vol. 116, p. 1482.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. L. Selektor
    • 1
    Email author
  • O. A. Fedorova
    • 2
  • E. V. Lukovskaya
    • 3
  • N. A. Tarasova
    • 1
  • O. A. Raitman
    • 1
  • A. V. Anisimov
    • 3
  • Yu. V. Fedorov
    • 2
  • V. V. Arslanov
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  3. 3.Chemistry DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations