Theoretical elucidation on corrosion inhibition efficiency of 11-cyano undecanoic acid phenylamide derivatives: DFT study

  • S. G. SagdincEmail author
  • Y. S. Kara
Physicochemical Problems of Materials Protection


The inhibition effects of 11-cyano undecanoic acid phenylamide derivatives against corrosion are studied by means of density functional approach B3LYP/6-311G(d,p) calculations. The efficiencies of corrosion inhibitors and the molecular structure relate to some parameters, such as E HOMO, E LUMO, the energy gap between E LUMO and E HOMOE = E LUMOE HOMO), dipole moments (μ), and other parameters, including electronegativity (χ), global hardness (η), softness (ρ), chemical potential (μc) and the fraction of electrons transferred from the inhibitor molecule to metallic atom (ΔN). The computed quantum chemical properties indicate good correlation with experimental corrosion inhibition efficiencies of 11-cyano undecanoic acid phenylamide derivatives. A good correlation between the substituent type and inhibition efficiency of inhibitors through the application of Hammett relationship is obtained. The linear correlation is also found between the Hammett parameters and calculated molecular orbital energies.


High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Inhibition Efficiency Lower Unoccupied Molecular Orbital Energy Molecular Orbital Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johannon, I. and Svennsonm M., Colloid Interface Sci., 2001, vol. 6, p. 178.Google Scholar
  2. 2.
    Yıldırım, A. and Cetin, M, Eur. J. Lipid Sci. Technol., 2008, vol. 110, p. 570.CrossRefGoogle Scholar
  3. 3.
    Sasti, V.S., Corrosion Inhibitors-Principles and Applications, Chichester, England: Wiley, 1998.Google Scholar
  4. 4.
    Growcock, F.B., Corrosion, 1989, vol. 45, p. 1003.CrossRefGoogle Scholar
  5. 5.
    Wang, H., Wang, X., Wang, L., et al., J. Mol. Model., 2007, vol. 13, p. 147.CrossRefGoogle Scholar
  6. 6.
    Samarkandy, A.A., Al-Oubi, A.O., Khalil, R.M., and Fattah, A.A., Bull. Electrochem., 2001, vol. 17, p. 111.Google Scholar
  7. 7.
    Khaled, K.F., Babic-Samardzija, K., and Hackerman, N., Electrochim. Acta, 2005, vol. 50, p. 2515.CrossRefGoogle Scholar
  8. 8.
    Tuzun, N.S., Bayata, F., and Sarac, A.S., J. Mol. Struct., 2008, vol. 857, p. 95.CrossRefGoogle Scholar
  9. 9.
    HyperChem 7.5 Release for Windows, Hypercube Inc., USA, 2003.Google Scholar
  10. 10.
    Frisch, A., Nielsen, A.B., and Holder, A.J., GaussView Users Manual, Pittsburg: Gaussian Inc., 2000.Google Scholar
  11. 11.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 03, Revision B.05, Wallingford, CT: Gaussian, Inc., 2004.Google Scholar
  12. 12.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.CrossRefGoogle Scholar
  13. 13.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev., Ser. B, 1988, vol. 41, p. 785.CrossRefGoogle Scholar
  14. 14.
    Sen, K.D., Electronegativity, Structure and Bonding, 66, Berlin: Springer-Verlag, 1987.Google Scholar
  15. 15.
    Parr, R.G., Donnelly, R.A., Levy, M., and Palke, W.E., J. Chem. Phys., 1978, vol. 68, p. 3801.CrossRefGoogle Scholar
  16. 16.
    Parr, R.G. and Pearson, R.G., J. Am. Chem. Soc., 1983, vol. 105, p. 7512.CrossRefGoogle Scholar
  17. 17.
    Pearson, R.G., Inorg. Chem., 1998, vol. 27, p. 734.CrossRefGoogle Scholar
  18. 18.
    Pearson, R.G., J. Am. Chem. Soc., 1963, vol. 85, p. 3533.CrossRefGoogle Scholar
  19. 19.
    Pearson, R.G., Proc. Nat. Acad. Sci. USA, 1986, vol. 83, p. 8440.CrossRefGoogle Scholar
  20. 20.
    Sastri, V.S. and Perumareddi, J.R., Corrosion, 1996, vol. 53, p. 671.Google Scholar
  21. 21.
    Martinez, S. and Tagljar, I.S., J. Mol. Struct. (Theochem), 2003, vol. 640, p. 167.CrossRefGoogle Scholar
  22. 22.
    Quraishi, S.M., Quraishi, M.A., and Quraishi, R., Corrosion, 2009, vol. 2, p. 83.Google Scholar
  23. 23.
    Martinez, S. and Stagljar, I., J. Am. Chem. Soc., 1983, vol. 105, p. 3801.Google Scholar
  24. 24.
    Sahin, M., Gece, G., Karci, F., and Bilgiç, S.J., Appl. Electrochem., 2008, vol. 38, p. 809.CrossRefGoogle Scholar
  25. 25.
    Eddy, N.O., Ita, B.I., and Ebenso, E.E., Int. J. Electrochem. Sci., 2011, vol. 6, p. 2101.Google Scholar
  26. 26.
    Lukovits, I., Kalman, E., and Zucchi, F., Corrosion, 2001, vol. 57, p. 3.CrossRefGoogle Scholar
  27. 27.
    Ju, H., Kai, Z., and Li, Yu., Corrosion Sci., 2008, vol. 50, p. 865.CrossRefGoogle Scholar
  28. 28.
    Bereket, G., Ogretir, C., and Ozsahim, C., J. Mol. Struct. (Theochem), 2003, vol. 663, p. 39.CrossRefGoogle Scholar
  29. 29.
    Gao, G. and Liang, C., Electrochim. Acta, 2007, vol. 52, p. 4554.CrossRefGoogle Scholar
  30. 30.
    Noor, E.A. and Al-Moubaraki, A.H., Mater. Chem. Phys., 2008, vol. 110, p. 145.CrossRefGoogle Scholar
  31. 31.
    Tadros, A.B. and El-Nabey, B.A.A., J. Electroanal. Chem., 1988, vol. 246, p. 433.CrossRefGoogle Scholar
  32. 32.
    Gad Allah, A., Hefney, M.M., Salih, S.A., and Basiounhy, M.S., Corrosion, 1989, vol. 45, p. 574.CrossRefGoogle Scholar
  33. 33.
    March, J., Advanced Organic Chemistry, 4th ed., N.Y.: John Wiley and Sons Inc., 1992, p. 278.Google Scholar
  34. 34.
    Vasseghi, S. and Nobe, K., Corrosion, 1979, vol. 35, p. 300.CrossRefGoogle Scholar
  35. 35.
    Fouda, A.S. and Mahfouz, H., J. Chil. Chem. Soc., 2009, vol. 54, p. 302.Google Scholar
  36. 36.
    Stupnisek-Lisac, E., Brnada, A., and Mance, A.D., Corrosion Sci., 2000, vol. 42, p. 243.CrossRefGoogle Scholar
  37. 37.
    Fauda, A., Al-Sarawy, A., and El-Katori, E., Eur. J. Chem., 2010, vol. 1, p. 312.CrossRefGoogle Scholar
  38. 38.
    Hansch, C., Leo, A., and Taft, R.W., Chem. Rev., 1991, vol. 91, p. 165.CrossRefGoogle Scholar
  39. 39.
    Ebenso, E.E., Ekpe, U.J., Ita, B.I., et al., Mater. Chem. Phys., 1999, vol. 60, p. 79.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Science and Art Faculty, Department of PhysicsKocaeli UniversityKocaeliTurkey
  2. 2.Science and Art Faculty, Department of ChemistryKocaeli UniversityKocaeliTurkey

Personalised recommendations