Electrolytic plasma processing for plating coatings and treating metals and alloys

  • A. D. Pogrebnyak
  • A. Sh. Kaverina
  • M. K. Kylyshkanov
New Substances, Materials, and Coatings

Abstract

A review of the methods of electrochemical treatment classified as plasma electrolysis is given. Special attention is paid to the physicochemical processes that proceed in electrolytes and the techniques of surface modification and application of protective coatings. The results of investigation of such coatings and surfaces upon electrolytic plasma processing illustrate the efficiency and effectiveness of the method. Being an efficient technique of the surface treatment, which involves both the surface cleaning and plating the coating, the plasma-electrolytic method is being rapidly developed and adapted for commercial use at present.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sluginov, N.P., Zh. Russ. Fiz.-Khim. Obshchestva, 1878, vol. 10, no. 8, p. 241.Google Scholar
  2. 2.
    Gunterschultze, A. and Betz, H., Electrolytkondensatoren, Berlin: Krayn, 1937.Google Scholar
  3. 3.
    McNiell, W. and Nordbloom, G.F., US Patent 2854390, 1958.Google Scholar
  4. 4.
    McNiell, W. and Gross, L.L., US Patent 3293158, 1966.Google Scholar
  5. 5.
    Markov, G.V. and Markova, G.A., USSR Inventor’s Certificate no. 526961, Byull. Izobret., 1976, no. 32.Google Scholar
  6. 6.
    Nikolaev, A.V., Markov, G.A., and Peshchevitskii, B.N., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1977, no. 5, p. 32.Google Scholar
  7. 7.
    Markov, G.A., Terleeva, O.P., and Shulepko, E.K., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1983, vol. 7, no. 3, p. 31.Google Scholar
  8. 8.
    Gordienko, P.S., Obrazovanie pokrytii na anodnopolyarizovannykh elektrodakh v vodnykh elektrolitakh pri potentsialakh proboya i iskreniya (Formation of Coatings on Anodically Polarized Electrodes in Aqueous Electrolytes at Breakdown and Sparking Potentials), Vladivostok: Dal’nauka, 1996.Google Scholar
  9. 9.
    Gordienko, P.S. and Gnedenkov, S.V., Mikrodugovoe oksidirovanie titana i ego splavov (Micro-Arc Oxidation of Titanium and Its Alloys), Vladivostok: Dal’nauka, 1997.Google Scholar
  10. 10.
    Malyshev, V.N., Markov, G.A., Fedorov, V.A., et al., Khim. Neftyanoe Mashinostroenie, 1984, no. 1, p. 26.Google Scholar
  11. 11.
    Kurze, P., Krysmann, W., Marx, G., and Wiss, Z., Tech. Hochsch. Karl-Marx-Stadt, 1982, vol. 24, p. 139.Google Scholar
  12. 12.
    Dittrich, K.H., Krysmann, W., Kurze, P., and Schneider, H.G., Cryst. Res. Technol., 1984, vol. 19, p. 93.CrossRefGoogle Scholar
  13. 13.
    Krysmann, W., Kurze, P., Dittrich, K.H., and Schneider, H.G., Cryst. Res. Technol., 1984, vol. 19, p. 973.CrossRefGoogle Scholar
  14. 14.
    Markov, G.A., Shulepko, E.K., and Zhukov, M.F., USSR Inventor’s Certificate no. 926084, Byull. Izobret., 1982, no. 17.Google Scholar
  15. 15.
    Karanik, Yu.A., Markov, G.A., Minin, V.F., et al., USSR Inventor’s Certificate no. 582894, Byul. Izobret., 1977, no. 45.Google Scholar
  16. 16.
    Brown, S.D., Kuna, K.J., and Van, T.B., J. Am. Ceram. Soc., 1971, vol. 54, p. 384.CrossRefGoogle Scholar
  17. 17.
    Van, T.B., Brown, S.D., and Wirtz, G.P., Am. Ceram. Soc. Bull., 1977, vol. 56, p. 563.Google Scholar
  18. 18.
    Yerokhin, A.L., Snizhko, L.O., Gurevina, N.L., et al., J. Phys. D: Appl. Phys., 2003, vol. 36, p. 2110.CrossRefGoogle Scholar
  19. 19.
    Huang, P., Wang, F., Kewei, X., and Han, Y., J. Surf. Coat. Technol., 2007, vol. 201, p. 5168.CrossRefGoogle Scholar
  20. 20.
    Ceschini, L., Lanzoni, E., Martini, C., et al., Wear, 2008, vol. 264, p. 86.CrossRefGoogle Scholar
  21. 21.
    Markov, G.A., Tatarchuk, V.V., and Mironova, M.K., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1983, vol. 7, no. 2, p. 34.Google Scholar
  22. 22.
    Wei, C.B., Tian, X.B., Yang, S.Q., et al., Surf. Coat. Technol., 2007, vol. 201, p. 5021.CrossRefGoogle Scholar
  23. 23.
    Habazaki, H., Onodera, T., Fushimi, K., et al., Surf. Coat. Technol., 2007, vol. 201, p. 8730.CrossRefGoogle Scholar
  24. 24.
    Titorenko, O.V., Rat’kova, E.A., and Savel’eva, E.A., Abstracts of Papers, Sovremennye Elektrokhimicheskie Tekhnologii. Nauchno Tekhnicheskaya Konferentsiya (Modern Electrochemical Techniques. Technical Scientific Conf.), Saratov, 1996, p. 51.Google Scholar
  25. 25.
    Petrosyants, A.A., Malyshev, V.N., Fedorov, V.A., and Markov, G.A., Trenie Iznos, 1984, vol. 5, no. 2, p. 350.Google Scholar
  26. 26.
    Voevodin, A.A., Yerokhin, A.L., Lyubimov, V.V., et al., Surf. Coat. Technol., 1996, vols. 86–87, p. 516.CrossRefGoogle Scholar
  27. 27.
    Yerokhin, A.L., Voevodin, A.A., Lyubimov, V.V., et al., Surf. Coat. Technol., 1998, vol. 110, p. 140.CrossRefGoogle Scholar
  28. 28.
    Saakyan, L.S., Efremov, A.P., and Soboleva, I.A., Zashch. Met., 1994, vol. 30, p. 101.Google Scholar
  29. 29.
    Gnedenkov, S.V., Krisanfova, O.A., Zavidnaya, A.G., et al., Prot. Met., 1999, vol. 35, no. 5, p. 480.Google Scholar
  30. 30.
    Sundararajan, G. and Krishna, L.R., Surf. Coat. Technol., 2003, vol. 167, p. 269.CrossRefGoogle Scholar
  31. 31.
    Wei, T., Yan, F., and Tian, J., J. Alloys Compd., 2005, vol. 389, nos. 1–2, p. 169.CrossRefGoogle Scholar
  32. 32.
    Yerokhin, A.L., Lyubimov, V.V., and Ashitkov, R.V., Ceram. Int., 1998, vol. 24, p. 1.CrossRefGoogle Scholar
  33. 33.
    Guangliang, Y., Xianyi, L., Yizhen, B., et al., J. Alloys Compd., 2002, vol. 345, nos. 1–2, p. 196.CrossRefGoogle Scholar
  34. 34.
    Xin, S.G., Jiang, Z.H., Wang, F.P., et al., J. Mater. Sci. Technol., 2001, vol. 17, no. 6, p. 657.Google Scholar
  35. 35.
    Wu, H.H., Wang, J.B., Long, B.Y., et al., Acta Phys. Sin., 2005, vol. 54, no. 12, p. 5743.Google Scholar
  36. 36.
    Wang, K., Koo, B.-H., Lee, C.-G., et al., Trans. Nonferrous Met. Soc. China, 2009, vol. 19, no. 4, p. 866.CrossRefGoogle Scholar
  37. 37.
    He, G. and Hagiwara, M., J. Mater. Sci. Eng., 2006, vol. 26, p. 14.Google Scholar
  38. 38.
    Guo, H.F. and An, M.Z., Appl. Surf. Sci., 2005, vol. 246, p. 229.CrossRefGoogle Scholar
  39. 39.
    Zozulin, A.J. and Bartak, D.E., Met. Finish., 1994, vol. 92, p. 39.Google Scholar
  40. 40.
    Sharma, A.K., Uma, R.R., Malek, A., et al., Met. Finish., 1996, vol. 94, p. 16.CrossRefGoogle Scholar
  41. 41.
    Gupta, P., Tenhundfeld, G., Daigle, E.O., and Schilling, P.J., Surf. Coat. Technol., 2005, vol. 200, p. 1587.CrossRefGoogle Scholar
  42. 42.
    Wang, Y., Lei, T., Jiang, B., and Guo, L., Appl. Surf. Sci., 2004, vol. 233, p. 258.CrossRefGoogle Scholar
  43. 43.
    Ko, Y.G., Namgung, S., and Shin, D.H., Surf. Coat. Technol., 2010, vol. 205, p. 2525.CrossRefGoogle Scholar
  44. 44.
    Kim, Y.M., Hwang, D.Y., Lee, C.W., et al., J. Met. Mater., 2010, vol. 48, p. 49.CrossRefGoogle Scholar
  45. 45.
    Li, H.X., Rudnev, V.S., Zheng, X.H., et al., J. Alloys Compd., 2008, vol. 462, p. 99.CrossRefGoogle Scholar
  46. 46.
    Duan, H.P., Yan, C.W., and Wang, F.H., Electrochim. Acta, 2007, vol. 52, p. 5002.CrossRefGoogle Scholar
  47. 47.
    Gu, W.C., Lv, G.H., Chen, H., et al., J. Alloys Compd., 2007, vol. 430, p. 308.CrossRefGoogle Scholar
  48. 48.
    Snizhko, L.O., Yerokhin, A.L., Pilkington, A., et al., Electrochim. Acta, 2004, vol. 49, p. 2085.CrossRefGoogle Scholar
  49. 49.
    Xu, J.L., Liu, F., and Wang, F.P., et al., J. Alloys Compd., 2009, vol. 472, p. 276.CrossRefGoogle Scholar
  50. 50.
    Liang, J., Guo, B.G., Tian, J., et al., Appl. Surf. Sci., 2005, vol. 252, p. 345.CrossRefGoogle Scholar
  51. 51.
    Chang, L., J. Alloys Compd., 2009, vol. 468, p. 462.CrossRefGoogle Scholar
  52. 52.
    Cai, Q.Z., Wang, L.S., Wei, B.K., et al., Surf. Coat. Technol., 2006, vol. 200, p. 3727.CrossRefGoogle Scholar
  53. 53.
    Duan, H.P., Du, K.Q., Yan, C.W., and Wang, F.H., Electrochim. Acta, 2006, vol. 51, p. 2898.CrossRefGoogle Scholar
  54. 54.
    Ko, Y.G., Lee, K.M., Shin, K.R., and Shin, D.H., Kor. J. Met. Mater., 2010, vol. 48, p. 724.CrossRefGoogle Scholar
  55. 55.
    Kharitonov, V.V., Plaskeev, A.A., Fedoseev, V.N., and Voskoboinikov, V.V., High Temp., 1988, vol. 25, p. 700.Google Scholar
  56. 56.
    Mazza, B., Pedeferri, P., and Re, G., Electrochim. Acta, 1978, vol. 23, p. 87.CrossRefGoogle Scholar
  57. 57.
    Usmani, S. and Sampath, S., Wear, 1999, vols. 225–229, p. 1131.CrossRefGoogle Scholar
  58. 58.
    Meletis, E.I., Nie, X., Wang, F., and Jiang, J.C., Surf. Coat. Technol., 2002, vol. 150, p. 246.CrossRefGoogle Scholar
  59. 59.
    Gupta, P., Tenhundfeld, G., and Daigle, E.O., Wire J. Int., 2005, vol. 38, p. 50.Google Scholar
  60. 60.
    Gupta, P. and Tenhundfeld, G., Plat. Surf. Finish., 1005, vol. 92, p. 48.Google Scholar
  61. 61.
    Tjong, S.C. and Cheng, H., Mater. Sci. Eng., R, 2004, vol. 45, p. 1.CrossRefGoogle Scholar
  62. 62.
    Lonyuk, B., Apachite, I., and Duszczyk, J., Surf. Coat. Technol., 2007, vol. 201, p. 8688.CrossRefGoogle Scholar
  63. 63.
    Badawi, F. and Villain, P., J. Appl. Crystallogr., 2003, vol. 36, nos. 3–2, p. 869.CrossRefGoogle Scholar
  64. 64.
    Fitzpatrick, M.E., Fry, A.T., Holdway, P., et al., Determination of Residual Stresses by X-ray Diffraction. Measurement Good Practice Guide, no. 52. NPL, Teddington: Middlesex, 2002.Google Scholar
  65. 65.
    Noyan, I.C. and Cohen, J.B., Residual Stress Measurement by Diffraction and Interpretation, New York: Springer, 1987.Google Scholar
  66. 66.
    Chernenko, V.I., Snezhko, L.A., and Papanova, I.I., Poluchenie pokrytii anodno-iskrovym elektrolizom (Plating Coatings by Anodic Sparking Electrolysis), Leningrad: Khimiya, 1991.Google Scholar
  67. 67.
    Pogrebnyak, A.D., Tyurin, Yu.N., Boiko, A.G., et al., Usp. Fiz. Metallov, 2005, vol. 6, p. 273.Google Scholar
  68. 68.
    Gordienko, P.S., Obrazovanie pokrytii na anodno polyarizovannykh elektrodakh v vodnykh elektrolitakh pri potentsialakh iskreniya i proboya (Formation of Coatings on Anodically Polarized Electrodes in Aqueous Electrolytes at Sparking and Breakdown Potentials), Vladivostok: Dal’nauka, 1996.Google Scholar
  69. 69.
    Atroshchenko, E.S., Kazantsev, I.A., and Rozen, A.E., Novye promyshlennye tekhnologii. Tekhnicheskii progress v atomnoi promyshlennosti. Seriya? Tekhnologiya montazhnykh rabot, (New Industrial Techniques. Technological Advances in Nuclear Power Industry. Technology of Installation Work), Moscow, 1996, no. 1.Google Scholar
  70. 70.
    Markov, G.A., Gizatullin, B.S., and Rychazhkova, I.E., USSR Inventor’s Certificate no. 926083, Byull. Izobret., 1982, no. 17.Google Scholar
  71. 71.
    Pogrebnjak, A.D., Kul’ment’eva, O.P., Kobzev, A.P., et al., Tech. Phys. Lett., 2003, vol. 29, p. 312.CrossRefGoogle Scholar
  72. 72.
    Nie, X., Hao, Q., and Wei, J., Wuhan Univ. Technol., 1996, vol. 11, p. 28.Google Scholar
  73. 73.
    Gupta, P., Tenhundfeld, G., Daigle, E.O., and Schilling, P.J., Surf. Coat. Technol., 2005, vol. 200, p. 1587.CrossRefGoogle Scholar
  74. 74.
    Wayne, S.F., Sampath, S., and Anand, V., Trib. Trans., 1994, vol. 373, p. 636.CrossRefGoogle Scholar
  75. 75.
    Pogrebnjak, A.D., Lozovan, A.A., Kirik, G.V., et al., Struktura i svoistva nanokompozitnykh, gibridnykh i polimernykh pokrytii (Structure and Properties of Nanocomposite, Hybrid, and Polymer Coatings), Moscow: URSS, 2011.Google Scholar
  76. 76.
    Tyurin, Yu.N. and Pogrebnjak, A.D., Surf. Coat. Technol., 2001, vols. 142–144, p. 293.CrossRefGoogle Scholar
  77. 77.
    Gorelik, S.S., Rastorguev, L.N., and Skakov, Yu.A., Rentgenograficheskii i elektronnoopticheskii analiz (X-Ray Diffraction and Electron-Optical Analysis), Moscow: Metallurgiya, 1970.Google Scholar
  78. 78.
    Bar’yakhtar, V.G., Buravlev, Yu.M., Shevchenko, V.P., et al., Trudy mezhdunarodnoi konerentsii “Oborudovanie i tekhnologii termicheskoi obrabotki metallov i splavov v mashinostroenii (Proc. Int. Conf. “Equipment and Technologies in Thermal Treatment of Metals and Alloys in Engineering Industry”), Kharkiv: NNTs KhFTI, 2000, p. 155.Google Scholar
  79. 79.
    Tyulyapin, A.I., Tyurin, Yu.N., and Trainov, A.I., Metalloved. Term. Obrab. Met., 1998, vol. 1, p. 9.Google Scholar
  80. 80.
    Eretnev, K.N. and Lebedev, S.V., Protsessy nagreva i ochistki poverkhnosti metallov v elektrolite i ikh prakticheskoe ispol’zovanie (Processes of Heating and Cleaning of Metal Surfaces in Electrolytes and Their Practical Application), Leningrad, 1997.Google Scholar
  81. 81.
    Kolachev, B.A., Elagin, V.I., and Livanov, V.A., Metallovedenie i termicheskaya obrabotka tsvetnykh metallov i splavov (Metal Research and Thermal Treatment of Non-Ferrous Metals and Alloys), Moscow: MISIS, 2001.Google Scholar
  82. 82.
    Svoistva elementov: spravochnik (Properties of Ele-ments: Handbook), Drits, M.E., Ed., Moscow: Metallurgiya, 1997.Google Scholar
  83. 83.
    Luchikov, L.P., Deformiruemye alyuminievye splavy dlya raboty pri povyshennykh temperaturakh (Wrought Aluminum Alloys for Operation at Heightened Temperatures), Moscow: Metallurgiya, 1965.Google Scholar
  84. 84.
    Tyurin, Yu.N. and Pogrebnyak, A.D., Tech. Phys., 2002, no. 11, p. 1463.Google Scholar
  85. 85.
    USSR Inventor’s Certificate no. 1488321, Byull. Izobret., 1987, no. 33.Google Scholar
  86. 86.
    USSR Inventor’s Certificate no. 2138564, Byull. Izobret., 1999, no. 27.Google Scholar
  87. 87.
    USSR Inventor’s Certificate no. 1546362, Byull. Izobret., 1988, no. 16.Google Scholar
  88. 88.
    Kulikov, I.S., Vashchenko, S.V., and Kamenev, A.Ya., Elektrolitno-plazmennaya obrabotka materialov (Electrolytic Plasma Processing of Materials), Minsk: Belaruskaya navuka, 2010.Google Scholar
  89. 89.
    Kadyrzhanov, K.K., Komarov, F.F., Pogrebnyak, A.D., et al., Ionno-plazmennaya i ionno-luchevaya obrabotka materialov (Plasma Ion and Ion Beam Processing of Materials), Moscow: MGU, 2005.Google Scholar
  90. 90.
    Parfenov, E.V., Yerokhin, A.L., and Matthews, A., Surf. Coat. Technol., 2007, vol. 201, p. 8661.CrossRefGoogle Scholar
  91. 91.
    Gupta, P., Tenhundfeld, G., Daigle, E.O., et al., Surf. Coat. Technol., 2007, vol. 201, p. 8746.CrossRefGoogle Scholar
  92. 92.
    Pogrebnyak, A.D., Kylyshkanov, M.K., Tyurin, Yu.N., et al., Tech. Phys., 2012, vol. 57, no. 6, p. 840.CrossRefGoogle Scholar
  93. 93.
    Zhukov, M.F., Dandaron, G.B., Zambalaev, Zh.Zh., and Fedotov, V.A., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekhn. Nauk, 1984, vol. 4, p. 100.Google Scholar
  94. 94.
    Pogrebnyak, A.D., Kylyshkanov, M.K., Bratushka, S.N., et al., Phys. Surf. Eng., 2008, vol. 6, p. 73.Google Scholar
  95. 95.
    Pogrebnjak, A.D. and Beresnev, V.M., Nanocoatings Nanosystems Nanotechnology, New-York: Bentham Science, 2012.Google Scholar
  96. 96.
    Azarenkov, N.A., Beresnev, V.M., Pogrebnyak, A.D., et al., Nanomaterialy, Nanopokrytiya, nanotekhnologii (Nanomaterials, Nanocoatings, Nanotechnology), Kharkiv: KhNU, 2009.Google Scholar
  97. 97.
    P. Misaelides, A. Hatzidimitriou, F. Noli, A.D. Pogrebnjak et. al. Surf. and Coat. Technol., 2004, vols. 180–181, p. 290–296.CrossRefGoogle Scholar
  98. 98.
    Yerokhin, A.L., Nie, X., Leyland, A., et al., Surf. Coat. Technol., 1999, vol. 122, p. 73.CrossRefGoogle Scholar
  99. 99.
    Pogrebnjak, A.D., Dyadyura, K.A., Kylyshkanov, M.K., et al., Kompressor. Energetich. Mashinostroenie, 2005, vol. 4, no. 6, p. 105.Google Scholar
  100. 100.
    Pogrebnjak, A.D., Gritsenko, B.P., Kylyshkanov, M.K., et al., Tech. Phys. Lett., 2006, vol. 32, no. 12, p. 1060.CrossRefGoogle Scholar
  101. 101.
    Kylyshkanov, M.K., Kolebaev, K.K., and Pogrebnjak, A.D., Kazakhstan Patent no. S21D78, 2009. 5.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. D. Pogrebnyak
    • 1
  • A. Sh. Kaverina
    • 1
  • M. K. Kylyshkanov
    • 2
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Serikbayev East Kazakhstan State Technical UniversityUst-KamenogorskKazakhstan

Personalised recommendations