Kinetics of formation and growth of epitaxial SrTiO3 films of single-crystal (001) SrTiO3 supports

  • A. N. Khodan
  • S. L. Kanashenko
  • D. -G. Crete
Physicochemical Processes at the Interfaces


The aim of this study was to quantitatively estimate the kinetics of the formation and growth of oxide SrTiO3 (STO) films using the method of the in situ reflection high-energy electron diffraction (RHEED) and compare the obtained results with the known growth models and theoretical estimates. The kinetics of the relaxation and crystallization of particles is studied under pulsed laser deposition (PLD) from oxide targets onto (001) STO supports or onto the surface of STO film growth at 650–800°C. Deposition frequencies of 0.1–10 Hz typical of PLD were used. The surface morphology and film structure was studied ex situ using the methods of AFM and X-ray-structural analysis. It was found that the time of relaxation of deposited particles is within the range of 2–20 s, which greatly exceeds or is comparable to the relative pulse duration. It was experimentally shown that structural distortions in epitaxial films for temperatures of ≤900°C are mainly due to the high rate of deposition and limited surface mobility of particles. The effect of structural relaxation in films is observed after the end of deposition; the time constant of bulk structural relaxation is ∼10 − ∼102 s or more. The obtained kinetic parameters of the formation of an oxide structure may be useful for the development of crystallization theory, as well as to optimize the conditions of epitaxial oxide film growth.


Pulse Laser Deposition Film Growth Reflection High Energy Elec Tron Diffraction Strontium Titanate Pulse Laser Deposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Khodan, A.N., Guyard, S., Contour, J.-P., et al., Thin Solid Films, 2007, vol. 515, p. 6422.CrossRefGoogle Scholar
  2. 2.
    Strikovski, M. and Miller, J.H., Appl. Phys. Lett., 1998, vol. 73, no. 12, p. 1733.CrossRefGoogle Scholar
  3. 3.
    Bouzehouane, K., Woodall, P., Khodan, A.N., et al., Appl. Phys. Lett., 2002, vol. 80, no. 1, p. 109.CrossRefGoogle Scholar
  4. 4.
    Siejka, J., Nucl. Instrum. Methods Phys. Res., 1994, vol. B85, p. 216.Google Scholar
  5. 5.
    Koren, G., Gupta, A., Baseman, R.J., et al., Appl. Phys. Lett., 1989, vol. 55, p. 2450.CrossRefGoogle Scholar
  6. 6.
    Gorbenko, O.Yu., Samoilenkov, S.V., Graboy, I.E., et al., Chem. Mater., 2002, vol. 14, p. 4026.CrossRefGoogle Scholar
  7. 7.
    Koster, G., Rijnders, G., Blank, D.H.A., et al., Physica A, 2000, vol. 339, p. 215.Google Scholar
  8. 8.
    Khodan, A.N., Contour, J.-P., Michel, D., et al., J. Crystal Growth, 2000, vol. 209, p. 828.CrossRefGoogle Scholar
  9. 9.
    Peng, L.-M., Dudarev, S.L., and Whelan, M.J., High-Energy Electron Diffraction and Microscopy, Oxford: University Press, 2004.Google Scholar
  10. 10.
    Trofimov, V.I., Trofimov, I.V., and Jong-Il, Kim, Comp. Materials Sci., 2005, vol. 33, p. 362.CrossRefGoogle Scholar
  11. 11.
    Trofimov, V.I. and Jong-Il, Kim., in Trends in Thin Solid Films Research, Jost, Alyssa, R., Ed., New York: Nova Science Publishers, 2007, p. 229.Google Scholar
  12. 12.
    Metev, S., in Laser Processing and Diagnostics, vol. 2, Bauerle, D., Kompa, K.L., and Laude, L., Eds., Strasbourg: Proc. E-MRS, 1986, p. 143.Google Scholar
  13. 13.
    Predtechensky, M.R., Applied Superconductivity, 1993, vol. 1, nos. 3–6, p. 793.CrossRefGoogle Scholar
  14. 14.
    Predtechensky, M.R. and Mayorov, A.P., Applied Superconductivity, 1993, vol. 1, nos. 10–12, p. 2011.CrossRefGoogle Scholar
  15. 15.
    Metev, S. and Meteva, K., Appl. Surf. Sci., 1989, vol. 43, p. 402.CrossRefGoogle Scholar
  16. 16.
    Kashchiev, D.J., J. Cryst. Growth, 1977, vol. 40, p. 29.CrossRefGoogle Scholar
  17. 17.
    Walton, D.J., Chem. Phys., 1962, vol. 37, p. 2182.Google Scholar
  18. 18.
    Stoyanov, S. and Kashchiev, D., Current Topics Mater. Sci., 1981, vol. 7, p. 69.Google Scholar
  19. 19.
    Kashchiev, D., Phys. Status Solidi A, 1981, vol. 64, p. 715.CrossRefGoogle Scholar
  20. 20.
    Oura, K., Lifshits, V.G., Saranin, A.A., et al., Surface Sci. An Introduction, Berlin, Heidelberg: Springer, 2003.Google Scholar
  21. 21.
    Rosenfeld, G., Poelsema, B., and Cosma, G., The Chemical Physics of Solid Surfaces, 1997, vol. 8, p. 66.CrossRefGoogle Scholar
  22. 22.
    Amar, J.G., Family, F., and Lam, P.M., Phys. Rev. B, 1994, vol. 50, no. 12, p. 8781.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. N. Khodan
    • 1
  • S. L. Kanashenko
    • 1
  • D. -G. Crete
    • 2
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Unit@e Mixte de Physique C.N.R.S./THALESPalaiseauFrance

Personalised recommendations