Advertisement

Nanochemistry and supramolecular chemistry of actinides and lanthanides: Problems and prospects

  • A. Yu. Tsivadze
  • G. V. Ionova
  • V. K. Mikhalko
Modern Problems of Physical Chemistry of Surfaces, Material Science and Protection

Abstract

The possibility of using unique properties of lanthanides in the nanotechnology is demonstrated. The origination of linear and nonlinear optical properties of lanthanide compounds with phthalocyanines, porphyrins, naphthalocyanines, and their analogs in solutions and condensed state and the prospects of obtaining novel materials on their basis are discussed. Based on the electronic structure and properties of lanthanides and their compounds, namely, optical and magnetic characteristics, electronic and ionic conductivity, and fluctuating valence, molecular engines are classified. High-speed storage engines or memory storage engines; photoconversion molecular engines based on Ln(II) and Ln(III); electrochemical molecular engines involving silicate and phosphate glasses; molecular engines whose operation is based on insulatorsemiconductor, semiconductor-metal, and metal-superconductor types of conductivity phase transitions; solid electrolyte molecular engines; and miniaturized molecular engines for medical analysis are distinguished. It is shown that thermodynamically stable nanoparticles of Ln x M y composition can be formed by d elements of the second halves of the series, i.e., those arranged after M = Mn, Tc, and Re. Prospects of using lanthanide superconductors in nanotechnology are considered.

Keywords

Plutonium Phthalocyanine Electron Affinity Nonlinear Optical Property Supramolecular Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poole, C.P., Jr. and Owen, F.J., Introduction to Nanotechnology, New York: Wiley, 2003.Google Scholar
  2. 2.
    Alfimov, M.V., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 1, p. 13.Google Scholar
  3. 3.
    Tsivadze, A.Yu., Ionova, G.V., Mikhalko, V.K., and Kostrubov, Yu.N., Usp. Khimii, 2007, vol. 76, p. 237.Google Scholar
  4. 4.
    Tsivadze, A.Yu., Ionova, G.V., Mikhalko, V.K., and Kostrubov, Yu.N., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 1, p. 73.Google Scholar
  5. 5.
    Covington, A., Calabrese, D., and Thompson, J., J. Phys. B, 1997, p. L855.Google Scholar
  6. 6.
    Bercovits, D., Instr. Methods Phys. Res. B, 1997, vol. 123, p. 515.CrossRefADSGoogle Scholar
  7. 7.
    Lineberger, W.C., J. Phys. Ref. Data, 1985, vol. 14, p. 731.ADSGoogle Scholar
  8. 8.
    Efimov, A.I., Spravochnik neorganicheskikh soedinenii (Handbook of Inorganic Compounds), Leningrad: Khimiya, 1983.Google Scholar
  9. 9.
    Rienstra-Kirasofe, J.C., Tschuumper, S., and Schaefer, H., Chem. Rev., 2002, vol. 102, p. 231.CrossRefGoogle Scholar
  10. 10.
    Ionova, G., Mikhalko, V., and Kostrubov, Yu., Int. Conf. Nancy, France, 2003, p. 13.Google Scholar
  11. 11.
    Ionova, G.V., Mikhalko, V.K., Gerasimova, G.A., and Suraeva, N.I., Zh. Neorg. Khimii, 2003, vol. 48, p. 1885.Google Scholar
  12. 12.
    Moore, C., Atomic energy levels. National Bureau of Standards (US), Circ. no. 467, Washington, 1952, vols. 1–3.Google Scholar
  13. 13.
    Brewer, L., J. Opt. Soc. Am. B: Opt. Phys., 1971, vol. 61, pp. 1101, 1666.CrossRefADSGoogle Scholar
  14. 14.
    Massey, H., Negative Ions, London: Cambridge University Press, 1976.Google Scholar
  15. 15.
    Garwan, M.A., Zhao, X.L., Nadeau, M.J., et al., Bull. Am. Phys. Soc., 1992, vol. 37, p. 1148.Google Scholar
  16. 16.
    Bratsch, S., Chem. Phys. Lett., 1983, vol. 98, p. 113.CrossRefADSGoogle Scholar
  17. 17.
    Eliav, E. and Kaldor, U., Phys. Rev. A, 1994, vol. 52, p. 291.CrossRefADSGoogle Scholar
  18. 18.
    Ionova, G., NRC5 Int. Conf. Ext. Abstracts, Switzerland, 2000, p. 98.Google Scholar
  19. 19.
    Ionova, G.V., Vokhmin, V.G., and Spitsyn, V.I., Zakonomernosti izmeneniya svoistv lantanidov i aktinidov (Regular Changes in the Properties of Lanthanides and Actinides), Moscow: Nauka, 1990.Google Scholar
  20. 20.
    Springer Handbook of Nanotechnology, Bushan, B., Ed., New York: Springer, 2004.Google Scholar
  21. 21.
    Handbook of Nanophase and Nanostructured Materials: Materials Systems and Applications, Wang, Z.L., Liu Y., and Zhang Z., Eds., New York: Kluwer, 2002.Google Scholar
  22. 22.
    Schmid, D., Eur. J. Inorg. Chem, 2003, p. 3081.Google Scholar
  23. 23.
    Li, X., Wu, H., and Wang, X., Phys. Rev. Lett., 1998, vol. 81, p. 1909.CrossRefADSGoogle Scholar
  24. 24.
    Wu, H., Wang, X., and Desai, S., Phys. Rev. Lett., 1998, vol. 76, p. 212.CrossRefADSGoogle Scholar
  25. 25.
    Wang, L., Wang, X., and Wu, H., J. Am. Chem. Soc., 1998, vol. 120, p. 6556.CrossRefGoogle Scholar
  26. 26.
    Wang, L., Wu, H., and Cheng, H., Phys. Rev. B, 1997, vol. 55, p. 12884.CrossRefADSGoogle Scholar
  27. 27.
    Wang, L. and Cheng, H., J. Chem. Phys., 1995, vol. 102, p. 9480.CrossRefADSGoogle Scholar
  28. 28.
    Wang, L. and Wu, H., Advances in Metals and Semiconductor Clusters, Greenwich: JAI, 1998, vol. 4.Google Scholar
  29. 29.
    Wang, L. and Wu., H, Z. Phys. Chem., 1998, vol. 203, p. 45.Google Scholar
  30. 30.
    Hume-Rothery, W., Acta Metall., 1965, vol. 13, p. 1039.CrossRefGoogle Scholar
  31. 31.
    Brooks, M.S.S., Johansson, B., and Scriver, H.L., in Handbook on the Physics and Chemistry of the Actinides, Freeman, A.J. and Lander, G.H., Eds., North-Holland, 1984, vol. 1, p. 154.Google Scholar
  32. 32.
    Fournier, J.M. and Manes, L., Structure and Bonding, 1985, vols. 59–60, p. 1.CrossRefGoogle Scholar
  33. 33.
    Clark, D., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 1, p. 6.Google Scholar
  34. 34.
    Ackermann, R. and Rauh, E., J. Inorg. Nucl. Chem., 1973, vol. 35, p. 3787.CrossRefGoogle Scholar
  35. 35.
    Haire, R.G. and Eyring, L., in Handbook on Physics and Chemistry, Gschneidner, K.A., Eyring, L., Choppin, G., and Lander, G.H, Eds., 1994, vol. 18, p. 414.Google Scholar
  36. 36.
    Roberts, R. and Walter, A., Physico-Chimie du Pa, Orsay, 1965, p. 51.Google Scholar
  37. 37.
    Stcyouzkoy, T., C. R. Acad. Sci. (Paris), 1964, vol. 259, p. 3016.Google Scholar
  38. 38.
    Wiegel, F., in The Chemistry of Actinide Elements, Katz, J., Ed., New York: Chapman, 1986, p. 169.Google Scholar
  39. 39.
    Zachariasen, W.H., Acta Cryst, 1949, vol. 2, p. 388.CrossRefGoogle Scholar
  40. 40.
    Schultz, W., The Chemistry of Am, Report TID 26971 (ERDA, Oak Ridge), 1976Google Scholar
  41. 41.
    Cunningham, B. and Wallmann, J., J. Inorg. Nucl. Chem., 1964, vol. 26, p. 271.CrossRefGoogle Scholar
  42. 42.
    Fahey, J., Paterson, J., and Baybarz, R., J. Inorg. Nucl. Chem., 1972, vol. 8, p. 101.CrossRefGoogle Scholar
  43. 43.
    Mikheev, N.B., Zh. Neorg. Khimii, 2002, vol. 47, p. 588.Google Scholar
  44. 44.
    Morss, L., in Chemistry of Actinide Elements, Katz, J.J., Seaborg, G., and Morss, L., Eds., New York: Chapman and Hall, 1986, vol. 1, p. 1278.Google Scholar
  45. 45.
    Robin, M. and Day, P., Adv. Inorg. Radiochemistry, 1967, vol. 10, p. 248.Google Scholar
  46. 46.
    Krot, N.N., Gel’man, A.D., Mefod’eva, M.P., et al., Semivalentnoe sostoyanie urana, neptuniya, ameritsiya (Heptavalent State of Uranium, Neptunium, and Americium), Moscow: Nauka, 1977.Google Scholar
  47. 47.
    Noguera, C., Physics and Chemistry at Oxide Surfaces, Cambridge: Cambridge University Press, 1996.CrossRefGoogle Scholar
  48. 48.
    Henrich, V.E. and Cox, P.A., The Surface Chemistry of Metal Oxides, Cambridge: Cambridge University Press, 1994.Google Scholar
  49. 49.
    Leger, J., Solid State Commun., 1981, vol. 36, p. 261.CrossRefGoogle Scholar
  50. 50.
    Haschke, J. and Eick, H., J. Phys. Chem., 1969, vol. 73, p. 374.CrossRefGoogle Scholar
  51. 51.
    Fishel, N., Haschke, J., and Eick, H., Inorg. Chem., 1970, vol. 9, p. 413.CrossRefGoogle Scholar
  52. 52.
    Krill, U., Solid State Commun., 1980, vol. 33, p. 351.CrossRefADSGoogle Scholar
  53. 53.
    Ionova, G.V., Zh. Fiz. Khimii, 1980, vol. 54, p. 1112.Google Scholar
  54. 54.
    Fernandez-Garsia, M., Martinez-Arias, A., and Hanson, J.C., Chem. Rev., 2004, vol. 104, p. 4063.CrossRefGoogle Scholar
  55. 55.
    Kovba, L.M., Okisly perekhodnykh metallov (Transient Metal Oxides), Moscow: Mosk. Gos. Univ., 1973.Google Scholar
  56. 56.
    Naito, K., J. Nucl. Mater., 1989, vol. 169, p. 329.CrossRefADSGoogle Scholar
  57. 57.
    Thibaut, E., 2nd Int. Conf. on Electron Structure, 1976, p. 151.Google Scholar
  58. 58.
    Teterin, Yu., Phys. Chem. Mineral., 1981, vol. 7, p. 151.CrossRefMathSciNetADSGoogle Scholar
  59. 59.
    Manes, L. and Benedict, U., Structure Bonding, 1985, vols. 59–60, p. 75.CrossRefGoogle Scholar
  60. 60.
    Clark, D., Phys. Today, 2006, vol. 59, p. 34.CrossRefGoogle Scholar
  61. 61.
    Ionova, G.V. and Kiseleva, A.A., Zh. Neorg. Khimii, 1994, vol. 39, p. 1373.Google Scholar
  62. 62.
    Ionova, G.V. and Kiseleva, A.A., Zh. Fiz. Khimii, 1993, vol. 67, pp. 1177, 1489, 1548.Google Scholar
  63. 63.
    Roesky, H., Haiduc, I., and Hosmane, N., Chem. Rev., 2003, vol. 103, p. 2579.CrossRefPubMedGoogle Scholar
  64. 64.
    Recommended Key Values for Thermodynamic Codata, Bull. Paris, 1977, no. 28.Google Scholar
  65. 65.
    Wagman, D., J. Phys. Chem. Ref. Data, 1982, vol. 11, p. S2.Google Scholar
  66. 66.
    Ionova, G.V., Pershina, V.G., and Spitsyn, V.I., Elektronnoe stroenie aktinidov (Electronic Structure of Actinides), Moscow: Nauka, 1986.Google Scholar
  67. 67.
    Ionova, G.V. and Spitsyn, V.I., Effektivnye zaryady v soedineniyakh aktinidov (Effective Charges in Actinide Compounds), Moscow: Nauka, 1989.Google Scholar
  68. 68.
    Ershov, B.G., Usp. Khim., 1981, vol. 50, p. 2137; 1992, vol. 61, p. 1805; 1997, vol. 66, p. 103.Google Scholar
  69. 69.
    Cox, P.A., The Electronic Structure and Chemistry of Solids, Oxford: Oxford Science Publications, 1990.Google Scholar
  70. 70.
    Lehn, J.-M., Supramolecular Chemistry: Concepts and Perspective, Weinheim: VCH, 1995.Google Scholar
  71. 71.
    Torre, G., Vazques, P., Agulo-Lopes, F., and Torres, T., Chem. Rev., 2004, vol. 104, p. 3723.CrossRefPubMedGoogle Scholar
  72. 72.
    Ionova, G., Tzivadze, A.Yu., and Mikhalko, V., Int. Summer School “Supramolecular Systems in Chemistry and Biology,” Abstracts, Russia, Tuapse, 2006, p. 56.Google Scholar
  73. 73.
    Ionova, G.V., Mikhalko, V.K., Kostrubov, Yu.N., and Tsivadze, A.Yu., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 5, p. 83.Google Scholar
  74. 74.
    Ionova, G., Guillaumont, R., Ionov, S., et al., J. Alloys Compd., 1998, vols. 275–277, p. 785.CrossRefGoogle Scholar
  75. 75.
    Landelly, A. and Palenzona, A., in Handbook on Physics and Chemistry of Rare Earths, Gschneidner, K.A. and Eyring, L., Eds., 1979, vol. 18, p. 1.Google Scholar
  76. 76.
    Falicov, L., Hanke, W., and Maple, M., Valence Fluctuations in Solids, New York: North Holland, 1981.Google Scholar
  77. 77.
    Donega, C. de M., Ynior, S.A., and Sa, G.F., J. Alloys Compd., 1997, vol. 250, p. 427.CrossRefGoogle Scholar
  78. 78.
    Shen, X.A. and Kastra, R., J. Alloys Compd., 1997, vol. 250, p. 435.CrossRefGoogle Scholar
  79. 79.
    Moria, M., Isikava, M., and Matsuda, Y., J. Alloys Compd., 1997, vol. 250, p. 524.CrossRefGoogle Scholar
  80. 80.
    Kanno, H. and Akamo, Y., J. Alloys Compd., 1997, vol. 250, p. 528.CrossRefGoogle Scholar
  81. 81.
    Antonio, M., Soderholm, L., and Ellison, A., J. Alloys Compd., 1997, vol. 250, p. 536.CrossRefGoogle Scholar
  82. 82.
    Xu, W. and Peterson, J., J. Alloys Compd., 1997, vol. 250, p. 213.CrossRefGoogle Scholar
  83. 83.
    Takano, Y., Ogava, C., and Miyahara, Y., J. Alloys Compd., 1997, vol. 250, p. 221.CrossRefGoogle Scholar
  84. 84.
    Su, M., Liu, S., and Lin, Q., J. Alloys Compd., 1997, vol. 250, p. 229.CrossRefGoogle Scholar
  85. 85.
    Rosenkranz, S. and Trunov, V., J. Alloys Compd., 1997, vol. 250, p. 577.CrossRefGoogle Scholar
  86. 86.
    Imanaka, N. and Adachi, G., J. Alloys Compd., 1997, vol. 250, p. 492.CrossRefGoogle Scholar
  87. 87.
    Hemmila, I., Mukkala, V., and Takalo, H., J. Alloys Compd., 1997, vol. 250, p. 158.CrossRefGoogle Scholar
  88. 88.
    Ionova, G.V., Mikhalko, V.K., and Tsivadze, A.Yu., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 1, p. 234.Google Scholar
  89. 89.
    Kobayashi, N., Coord. Chem. Rev., 2002, vol. 227, p. 129.CrossRefGoogle Scholar
  90. 90.
    Kottas, G.S., Clark, L.I., Horinek, D., and Michl, J., Chem. Rev., 2005, vol. 105, p. 1281.CrossRefPubMedGoogle Scholar
  91. 91.
    Ionova, G.V., Mikhalko, V.K., Kostrubov, Yu.N., and Tsivadze, A.Yu., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 2, p. 277.Google Scholar
  92. 92.
    Ionova, G.V., Mikhalko, V.K., Kostrubov, Yu.N., and Tsivadze, A.Yu., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 3, p. 176.Google Scholar
  93. 93.
    Ginzburg, V., Poisk, 2008, p. 978.Google Scholar
  94. 94.
    Phillips, J.C., Phys. Rev. B, 2007, vol. 75, p. 530.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. Yu. Tsivadze
    • 1
  • G. V. Ionova
    • 1
  • V. K. Mikhalko
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations