Advertisement

Catalytic Co-Combustion of Peat and Anthracite in a Fluidized Bed

  • 1 Accesses

Abstract

The catalytic combustion of peat, anthracite, and their mixture in a ratio of 40 : 60 wt % was studied. The addition of peat with a high yield of volatiles to anthracite increased the degree of burnout of the mixture. When the commercial aluminum-copper-chromium oxide catalyst IK-12-70 was used (bed height 1 m, process temperature 700–750°C, particle size of solid fuel less than 1.25 mm), the degree of burnout was 98.2% (peat), 50.9% (anthracite), and 74.2% (peat–anthracite mixture). For large particles of a shaped peat–anthracite mixture with an equivalent diameter of 11.6–18.6 mm, burnout in the upper part of the fluidized bed of the catalyst was 80.5%. The degree of burnout of large particles fed into the lower part of the fluidized bed was evaluated taking into account the degree of burnout of small particles that passed the bed. When large particles of the shaped peat–anthracite mixture were fed, burnout reached at least 95% at a temperature of 700–750°C and a catalyst bed height of 1 m. To avoid accumulation of ash particles in the fluidized bed, the particle size of peat and anthracite in the shaped fuel should not exceed 1–1.5 mm when using a catalyst with a particle size of 2 mm.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.

REFERENCES

  1. 1

    Parmon, V.N., Gruzdkov, Yu.A., Burdukov, A.P., Belyaev, L.S., Kler, A.M., Koshelev, A.A., Marchenko, O.V., Sutyrina, O.B., and Tyurina, E.A., Ross. Khim. Zh., 1994, vol. 38, no. 3, pp. 40–55.

  2. 2

    Alkhasov, A.B., Vozobnovlyaemaya energetika (Renewable Energy), Moscow: Fizmatlit, 2010.

  3. 3

    Pugach, L.I., Serant, F.A., and Serant, D.F., Netraditsionnaya energetika – vozobnovlyaemye istochniki, ispol’zovanie biomassy, termokhimicheskaya podgotovka, ekologicheskaya bezopasnost’: Ucheb. posobie (Unconventional Energy: Renewable Sources, Biomass Utilization, Thermochemical Preparation, and Environmental Safety. Textbook), Novosibirsk: Novosib. Gos. Tekhn. Univ., 2006.

  4. 4

    Elistratov, V.V., Vozobnovlyaemaya energetika (Renewable Energy), Saint-Petersburg: S.-Peterb. Polytekhn. Univ., 2011.

  5. 5

    Energosberezhenie i vozobnovlyaemye istochniki energii. Uchebno-metodicheskoe posobie (Energy Saving and Renewable Energy Sources. Study Guide), Kundas, S.P., Ed., Minsk: Sakharov Mezhdunar. Gos. Ekol. Univ., 2011.

  6. 6

    Potentsial i vozmozhnosti ispol’zovaniya torfa (Potentiality and Application Possibilities of Peat), Moscow: NP “Rostorf”, 2014. http://rostorf.ru/files/prezentaciya_ universal.pdf. Cited October 7, 2019.

  7. 7

    Tcvetkov, P.S., Mires Peat, 2017, vol. 19, pp. 1–12. http://www.mires-and-peat.net/media/map19/map_ 19_14.pdf. Cited October 7, 2019.

  8. 8

    Zhovmir, N.M., Geletukha, G.G., Zheleznaya, T.A., and Slenkin, M.V., Prom. Teplotekh., 2006, vol. 28, no. 2, pp. 75–85.

  9. 9

    Shchudlo, T.S., Dunaevskaya, N.I., Bestsennyi, I.V., and Bondzik, D.L., Abstract of Papers, Trudy VIII Vserossiiskoi konferentsii s mezhdunarodnym uchastiem “Gorenie Tverdogo Topliva” (Proc. VIII All-Russian Conference with International Participation “Combustion of Solid Fuel”), Novosibirsk, 2012, pp. 111.1–111.8. http:// www.itp.nsc.ru/conferences/gtt8/files/111Shchudlo.pdf. Cited October 7, 2019.

  10. 10

    Mikhalev, A.V., Fluidized bed hydrodynamics and its effect on the efficiency and environmental compatibility of the anthracite culm and biograins co-combustion process, Cand. Sci. (Eng.) Dissertation, Tambov: Tambov State Techn. Univ., 2007.

  11. 11

    Is’emin, R.L., Konyakhin, V.V., Kuz’min, S.N., Mikhalev, A.V., Zorin, A.T., and Budkova, E.V., Energ. Elektrif., 2006, no. 9, pp. 45–51.

  12. 12

    Kirsanov, Yu.I., Papers presented at Vserossiiskoi molodezhnoi konferentsii “Ekologicheskie problemy promyshlenno razvitykh i resursodobyvayushchikh regionov: puti resheniya” (All-Russian Research and Practice Conference of Young Scientists “Environmental Problems of Industrial and Resource-Producing Regions: Ways of Solution”), Kemerovo, December 22, 2016; report no. 20.

  13. 13

    Khodakov, Yu.S., Oksidy azota i teploenergetika (Nitrogen Oxides and Heat Power Industry), Moscow: EST-M, 2001.

  14. 14

    Oka, S.N., Fluidized Bed Combustion, New York: Marcel Dekker, 2004.

  15. 15

    Belousov, V.N., Smorodin, S.N., and Smirnova, O.S., Toplivo i teoriya goreniya. Uchebnoe posobie (Fuel and Combustion Theory. Textbook), part I: Toplivo (Fuel), Saint-Petersburg: SPbGTURP, 2011.

  16. 16

    Teplovoi raschet kotlov (Normativnyi metod) (Thermal Design of Boilers. Normative Method), Kagan, G.M., Ed., Saint-Petersburg: NPO TsKTI, 1998.

  17. 17

    Mikhailov, A.V., Zap. Gorn. Inst., 2016, vol. 220, pp. 538–544.

  18. 18

    Boreskov, G.K., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Nauka, 1986.

  19. 19

    Parmon, V.N., Ismagilov, Z.R., Kirillov, V.A., and Simonov, A.D., Katal. Prom-sti, 2002, no. 3, pp. 20–29.

  20. 20

    Parmon, V.N., Simonov, A.D., Sadykov, V.A., and Tikhov, S.F., Combust., Explos. Shock Waves, 2015, vol. 51, no. 2, pp. 143–150.

  21. 21

    Simonov, A.D., Fedorov, I.A., Dubinin, Yu.V., Yazykov, N.A., Yakovlev, V.A., and Parmon, V.N., Catal. Ind., 2013, vol. 5, no. 1, pp. 42–49.

  22. 22

    Dubinin, Yu.V., Simonov, A.D., Yazykov, N.A., and Yakovlev, V.A., Catal. Ind., 2015, vol. 7, no. 4, pp. 314–320.

  23. 23

    Yazykov, N.A., Dubinin, Yu.V., Simonov, A.D., Reshetnikov, S.I., and Yakovlev, V.A., Chem. Eng. J., 2016, vol. 283, pp. 649–655.

  24. 24

    Chibisova, N.V., Praktikum po ekologicheskoi khimii (Laboratory Manual on Environmental Chemistry), Kaliningrad: Kaliningr. Gos. Univ., 1999.

  25. 25

    Yazykov, N.A., Simonov, A.D., Aflyatunov, A.S., Dubinin, Yu.V., Selishcheva, S.A., Yakovlev, V.A., and Stepanenko, A.I., Chem. Sustainable Dev., 2017, vol. 25, no. 3, pp. 313–321.

  26. 26

    Sovremennye podkhody k issledovaniyu i opisaniyu protsessov sushki poristykh tel (Contemporary Approaches to the Study and Description of Drying Processes for Porous Bodies), Parmon, V.N, Ed., Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2001.

  27. 27

    Zyryanov, V.V. and Zyryanov, D.V., Zola unosa – tekhnogennoe syr’e (Fly Ash as Technogenic Raw Materials), Moscow: IPTs Maska, 2009.

  28. 28

    Manovica, V., Gruborb, B., and Loncarevic, D., Chem. Eng. Sci., 2006, vol. 61, no. 5, pp. 1676–1685.

  29. 29

    Vereshchagin, S.N., Kondratenko, E.V., Rabchevskii, E.V., Anshits, N.N., Solov’ev, L.A., and Anshits, A.G., Kinet. Catal., 2012, vol. 53, no. 4, pp. 449–455.

  30. 30

    Anshits, A.G., Bajukov, O.A., Kondratenko, E.V., Anshits, N.N., Pletnev, O.N., Rabchevskii, E.V., and Solovyev, L.A., Appl. Catal., A, 2016, vol. 524, pp. 192–199.

  31. 31

    Sharonova, O.M., Anshits, N.N., Solovyov, L.A., Salanov, A.N., and Anshits, A.G., Fuel, 2013, vol. 111, pp. 332–343.

  32. 32

    Sharonova, O.M., Anshits, N.N., and Anshits, A.G., Inorg. Mater., 2013, vol. 49, no. 6, pp. 586–594.

  33. 33

    Galloway, B.D., Sasmaz, E., and Padak, B., Fuel, 2015, vol. 145, pp. 79–83.

  34. 34

    Fang, F., Li, Z.-S., Cai, N.-S., Tang, X.-Y., and Yang, H.-T., Chem. Eng. Sci., 2011, vol. 66, no. 6, pp. 1142–1149.

  35. 35

    Farahbod, F. and Farahmand, S., Fuel, 2015, vol. 156, pp. 103–109.

  36. 36

    Jia, X., Wang, Q., Cen, K., and Chen, L., Fuel, 2016, vol. 163, pp. 157–165.

  37. 37

    Ibraeva, K.T., Manaev, Yu.O., Tabakaev, R.B., Yazykov, N.A., and Zavorin, A.S., Izv. Tomsk. Politekh. Inst., Inzh. Geores., 2019, no. 1, pp. 191–200.

Download references

Author information

Correspondence to N. A. Yazykov or A. D. Simonov or Yu. V. Dubinin or O. O. Zaikina.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yazykov, N.A., Simonov, A.D., Dubinin, Y.V. et al. Catalytic Co-Combustion of Peat and Anthracite in a Fluidized Bed. Catal. Ind. 11, 342–348 (2019) doi:10.1134/S2070050419040111

Download citation

Keywords:

  • catalyst
  • fluidized bed
  • combustion
  • peat
  • anthracite
  • mixture