Advertisement

Catalysis in Industry

, Volume 11, Issue 4, pp 295–300 | Cite as

Procedure for Measuring the Mass Fractions of Products of the Catalytic Ethylbenzene Pyrolysis Reaction

  • E. Yu. YakovlevaEmail author
  • Yan ShanShanEmail author
  • Z. P. PaiEmail author
CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • 2 Downloads

Abstract

A technique is proposed for determining the mass fractions of products of the catalytic ethylbenzene pyrolysis reaction on a capillary column with functionalized poly(1-trimethylsilyl-1-propyne) (PTMSP/N2O). The capillary column with PTMSP/N2O selectively separates methane, ethane, ethylene, and acetylene (light C1–C2 hydrocarbons), along with benzene, toluene, ethylbenzene, and styrene (aromatic hydrocarbons). A procedure is developed to measure the mass fractions of light (C1–C2) and aromatic hydrocarbons in the gas phase. The ranges of analytical measurement are 2.9 × 10−8 to 1.2 × 10−1 mg/mL for light C1–C2 hydrocarbons and 3.5 × 10−11 to 4.0 × 10−3 mg/mL for liquid hydrocarbons. The under conditions of repeatability is 1.9–4.7%.

Keywords:

catalytic ethylbenzene pyrolysis reaction capillary column functionalized poly(1-trimethylsilyl-1-propyne) light (C1–C2) and aromatic hydrocarbons 

Notes

ACKNOWLEDGMENTS

We thank Yu. V. Patrushev for preparing our chromatographic capillary column with functionalized poly(1-trimethylsilyl-1-propyne).

FUNDING

This work was performed as part of a State Task for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, project no. 17-117041710081-1.

REFERENCES

  1. 1.
    Drugov, Yu.S., Zenkevich, I.G., and Rodin, A.A., Gazokhromatograficheskaya identifikatsiya zagryaznenii vozdukha, vody, pochvy i biosred (Gas-Chromatographic Identification of Pollutants in Air, Water, Soil, and Biological Media), Moscow: BINOM, 2005.Google Scholar
  2. 2.
    Drugov, Yu.S. and Rodin, A.A., Monitoring organicheskikh zagryaznenii prirodnoi sredy (Monitoring of Organic Pollutants in the Environment), Moscow: BINOM, 2009.Google Scholar
  3. 3.
    Modern Practice of Gas Chromatography, Grob, R.L. and Barry, E.F., Eds., Hoboken, NJ: Wiley, 2004.Google Scholar
  4. 4.
    Fel’dblyum, V.Sh., Sintez i primenenie nepredel’nykh tsiklicheskikh uglevodorodov (Synthesis and Application of Unsaturated Cyclic Hydrocarbons), Moscow: Khimiya, 1982.Google Scholar
  5. 5.
    Burdick, D.L., and Leffler, W.L., Petrochemicals in Nontechnical Language, Tulsa, OK; PennWell Publishing, 2000.Google Scholar
  6. 6.
    Guliyants, S.T., Aleksandrova, I.V., and Tushakova, Z.T., Vestn. Kazan.Tekhnol. Univ., 2016, vol. 19, no. 3, pp. 75–77.Google Scholar
  7. 7.
    Matsumoto, Y., J. Mater. Cycles Waste Manage., 2001, vol. 3, no. 2, pp. 82–87.Google Scholar
  8. 8.
    Skjøth-Rasmussen, M.S., Glarborg, P., Østberg, M., Johannessen, J.T., Livbjerg, H., Jensen, A.D., and Christensen, T.S., Combust. Flame, 2004, vol. 136, nos. 1–2, pp. 91–128.Google Scholar
  9. 9.
    Agafonov, G.L., Vlasov, P.A., and Smirnov, V.N., Kinet. Catal., 2011, vol. 52, no. 3, pp. 358–370.CrossRefGoogle Scholar
  10. 10.
    Agafonov, G.L., Bilera, I.V., Vlasov, P.A., Zhil’tsova, I.V., Kolbanovskii, Yu.A., Smirnov, V.N., and Tereza, A.M., Gorenie Vzryv, 2015, vol. 8, no. 1, pp. 80–88.Google Scholar
  11. 11.
    Seo, Y.-H. and Shin, D.-H., Fuel, 2002, vol. 81, no. 16, pp. 2103–2112.CrossRefGoogle Scholar
  12. 12.
    PND F (Regulatory Document) 13.1.7-97: Method for the Chromatographic Measurement of Benzene, m-, p-, and o-Xylene, and Styrene Mass Concentrations in Industrial Wastes with a Universal Disposal Sampler, 1996. Google Scholar
  13. 13.
    GOST (State Standard) 24 975.1-2015: Ethylene and Propylene. Chromatographic Methods of Analysis, 2015.Google Scholar
  14. 14.
    REN ISO (International Standard) 22 854-2010: Liquid Petroleum Products. Determination of Hydrocarbon Types and Oxygenates in Automotive-Motor Gasoline. Multidimensional Gas Chromatography Method, 2010.Google Scholar
  15. 15.
    Belotserkovskaya, V.Yu. and Yakovleva, E.Yu., Russ. J. Phys. Chem. A, 2011, vol. 85, no. 5, pp. 851–856.CrossRefGoogle Scholar
  16. 16.
    Patrushev, Yu.V., Yakovleva, E.Yu., Shundrina, I.K., Ivanov, D.P., and Glazneva, T.S., J. Chromatogr. A, 2015, vol. 1406, pp. 291–298.CrossRefGoogle Scholar
  17. 17.
    Halász, I., and Horváth, C., Anal. Chem., 1963, vol. 35, no. 4, pp. 499–505.CrossRefGoogle Scholar
  18. 18.
    Yakovleva, Yu.V., Patrushev, Yu.V., and Pai, Z.P., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 5, pp. 1018–1024.CrossRefGoogle Scholar
  19. 19.
    Encyclopedia of Chromatography, Cazes, J., Ed., Boca Raton, FL: CRC Press, 2010.Google Scholar
  20. 20.
    Stolyarov, B.V., Savinov, I.M., and Vitenberg, A.G., Rukovodstvo k prakticheskim rabotam po gazovoi khromatografii (Laboratory Manual on Gas Chromatography), Leningrad: Khimiya, 1988.Google Scholar
  21. 21.
    RMG (Recommendations on Interstate Standardization) 61-2010: Accuracy, Trueness and Precision Measures of the Procedures for Quantitative Chemical Analysis. Methods of Evaluation, 2010.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations